Metamath Proof Explorer


Theorem liminfgelimsupuz

Description: The inferior limit is greater than or equal to the superior limit if and only if they are equal. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses liminfgelimsupuz.1 ( 𝜑𝑀 ∈ ℤ )
liminfgelimsupuz.2 𝑍 = ( ℤ𝑀 )
liminfgelimsupuz.3 ( 𝜑𝐹 : 𝑍 ⟶ ℝ* )
Assertion liminfgelimsupuz ( 𝜑 → ( ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ↔ ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) )

Proof

Step Hyp Ref Expression
1 liminfgelimsupuz.1 ( 𝜑𝑀 ∈ ℤ )
2 liminfgelimsupuz.2 𝑍 = ( ℤ𝑀 )
3 liminfgelimsupuz.3 ( 𝜑𝐹 : 𝑍 ⟶ ℝ* )
4 2 fvexi 𝑍 ∈ V
5 4 a1i ( 𝜑𝑍 ∈ V )
6 3 5 fexd ( 𝜑𝐹 ∈ V )
7 6 liminfcld ( 𝜑 → ( lim inf ‘ 𝐹 ) ∈ ℝ* )
8 7 adantr ( ( 𝜑 ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) → ( lim inf ‘ 𝐹 ) ∈ ℝ* )
9 6 limsupcld ( 𝜑 → ( lim sup ‘ 𝐹 ) ∈ ℝ* )
10 9 adantr ( ( 𝜑 ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) → ( lim sup ‘ 𝐹 ) ∈ ℝ* )
11 1 2 3 liminflelimsupuz ( 𝜑 → ( lim inf ‘ 𝐹 ) ≤ ( lim sup ‘ 𝐹 ) )
12 11 adantr ( ( 𝜑 ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) → ( lim inf ‘ 𝐹 ) ≤ ( lim sup ‘ 𝐹 ) )
13 simpr ( ( 𝜑 ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) → ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) )
14 8 10 12 13 xrletrid ( ( 𝜑 ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) → ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) )
15 9 adantr ( ( 𝜑 ∧ ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) → ( lim sup ‘ 𝐹 ) ∈ ℝ* )
16 id ( ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) → ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) )
17 16 eqcomd ( ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) → ( lim sup ‘ 𝐹 ) = ( lim inf ‘ 𝐹 ) )
18 17 adantl ( ( 𝜑 ∧ ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) → ( lim sup ‘ 𝐹 ) = ( lim inf ‘ 𝐹 ) )
19 15 18 xreqled ( ( 𝜑 ∧ ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) → ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) )
20 14 19 impbida ( 𝜑 → ( ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ↔ ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) )