Step |
Hyp |
Ref |
Expression |
1 |
|
liminfgelimsupuz.1 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
2 |
|
liminfgelimsupuz.2 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
3 |
|
liminfgelimsupuz.3 |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ* ) |
4 |
2
|
fvexi |
⊢ 𝑍 ∈ V |
5 |
4
|
a1i |
⊢ ( 𝜑 → 𝑍 ∈ V ) |
6 |
3 5
|
fexd |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
7 |
6
|
liminfcld |
⊢ ( 𝜑 → ( lim inf ‘ 𝐹 ) ∈ ℝ* ) |
8 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) → ( lim inf ‘ 𝐹 ) ∈ ℝ* ) |
9 |
6
|
limsupcld |
⊢ ( 𝜑 → ( lim sup ‘ 𝐹 ) ∈ ℝ* ) |
10 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) → ( lim sup ‘ 𝐹 ) ∈ ℝ* ) |
11 |
1 2 3
|
liminflelimsupuz |
⊢ ( 𝜑 → ( lim inf ‘ 𝐹 ) ≤ ( lim sup ‘ 𝐹 ) ) |
12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) → ( lim inf ‘ 𝐹 ) ≤ ( lim sup ‘ 𝐹 ) ) |
13 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) → ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) |
14 |
8 10 12 13
|
xrletrid |
⊢ ( ( 𝜑 ∧ ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) → ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) |
15 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) → ( lim sup ‘ 𝐹 ) ∈ ℝ* ) |
16 |
|
id |
⊢ ( ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) → ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) |
17 |
16
|
eqcomd |
⊢ ( ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) → ( lim sup ‘ 𝐹 ) = ( lim inf ‘ 𝐹 ) ) |
18 |
17
|
adantl |
⊢ ( ( 𝜑 ∧ ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) → ( lim sup ‘ 𝐹 ) = ( lim inf ‘ 𝐹 ) ) |
19 |
15 18
|
xreqled |
⊢ ( ( 𝜑 ∧ ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) → ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ) |
20 |
14 19
|
impbida |
⊢ ( 𝜑 → ( ( lim sup ‘ 𝐹 ) ≤ ( lim inf ‘ 𝐹 ) ↔ ( lim inf ‘ 𝐹 ) = ( lim sup ‘ 𝐹 ) ) ) |