| Step | Hyp | Ref | Expression | 
						
							| 1 |  | liminflelimsupuz.1 | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 2 |  | liminflelimsupuz.2 | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 3 |  | liminflelimsupuz.3 | ⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ ℝ* ) | 
						
							| 4 | 2 | fvexi | ⊢ 𝑍  ∈  V | 
						
							| 5 | 4 | a1i | ⊢ ( 𝜑  →  𝑍  ∈  V ) | 
						
							| 6 | 3 5 | fexd | ⊢ ( 𝜑  →  𝐹  ∈  V ) | 
						
							| 7 | 1 2 | uzubico2 | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ℝ ∃ 𝑗  ∈  ( 𝑘 [,) +∞ ) 𝑗  ∈  𝑍 ) | 
						
							| 8 | 3 | ffnd | ⊢ ( 𝜑  →  𝐹  Fn  𝑍 ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  𝐹  Fn  𝑍 ) | 
						
							| 10 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  𝑗  ∈  𝑍 ) | 
						
							| 11 |  | id | ⊢ ( 𝑗  ∈  𝑍  →  𝑗  ∈  𝑍 ) | 
						
							| 12 | 2 11 | uzxrd | ⊢ ( 𝑗  ∈  𝑍  →  𝑗  ∈  ℝ* ) | 
						
							| 13 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 14 | 13 | a1i | ⊢ ( 𝑗  ∈  𝑍  →  +∞  ∈  ℝ* ) | 
						
							| 15 | 12 | xrleidd | ⊢ ( 𝑗  ∈  𝑍  →  𝑗  ≤  𝑗 ) | 
						
							| 16 | 2 11 | uzred | ⊢ ( 𝑗  ∈  𝑍  →  𝑗  ∈  ℝ ) | 
						
							| 17 |  | ltpnf | ⊢ ( 𝑗  ∈  ℝ  →  𝑗  <  +∞ ) | 
						
							| 18 | 16 17 | syl | ⊢ ( 𝑗  ∈  𝑍  →  𝑗  <  +∞ ) | 
						
							| 19 | 12 14 12 15 18 | elicod | ⊢ ( 𝑗  ∈  𝑍  →  𝑗  ∈  ( 𝑗 [,) +∞ ) ) | 
						
							| 20 | 19 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  𝑗  ∈  ( 𝑗 [,) +∞ ) ) | 
						
							| 21 | 9 10 20 | fnfvimad | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑗 )  ∈  ( 𝐹  “  ( 𝑗 [,) +∞ ) ) ) | 
						
							| 22 | 3 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑗 )  ∈  ℝ* ) | 
						
							| 23 | 21 22 | elind | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑗 )  ∈  ( ( 𝐹  “  ( 𝑗 [,) +∞ ) )  ∩  ℝ* ) ) | 
						
							| 24 | 23 | ne0d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( ( 𝐹  “  ( 𝑗 [,) +∞ ) )  ∩  ℝ* )  ≠  ∅ ) | 
						
							| 25 | 24 | ex | ⊢ ( 𝜑  →  ( 𝑗  ∈  𝑍  →  ( ( 𝐹  “  ( 𝑗 [,) +∞ ) )  ∩  ℝ* )  ≠  ∅ ) ) | 
						
							| 26 | 25 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℝ )  ∧  𝑗  ∈  ( 𝑘 [,) +∞ ) )  →  ( 𝑗  ∈  𝑍  →  ( ( 𝐹  “  ( 𝑗 [,) +∞ ) )  ∩  ℝ* )  ≠  ∅ ) ) | 
						
							| 27 | 26 | reximdva | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℝ )  →  ( ∃ 𝑗  ∈  ( 𝑘 [,) +∞ ) 𝑗  ∈  𝑍  →  ∃ 𝑗  ∈  ( 𝑘 [,) +∞ ) ( ( 𝐹  “  ( 𝑗 [,) +∞ ) )  ∩  ℝ* )  ≠  ∅ ) ) | 
						
							| 28 | 27 | ralimdva | ⊢ ( 𝜑  →  ( ∀ 𝑘  ∈  ℝ ∃ 𝑗  ∈  ( 𝑘 [,) +∞ ) 𝑗  ∈  𝑍  →  ∀ 𝑘  ∈  ℝ ∃ 𝑗  ∈  ( 𝑘 [,) +∞ ) ( ( 𝐹  “  ( 𝑗 [,) +∞ ) )  ∩  ℝ* )  ≠  ∅ ) ) | 
						
							| 29 | 7 28 | mpd | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ℝ ∃ 𝑗  ∈  ( 𝑘 [,) +∞ ) ( ( 𝐹  “  ( 𝑗 [,) +∞ ) )  ∩  ℝ* )  ≠  ∅ ) | 
						
							| 30 | 6 29 | liminflelimsup | ⊢ ( 𝜑  →  ( lim inf ‘ 𝐹 )  ≤  ( lim sup ‘ 𝐹 ) ) |