Step |
Hyp |
Ref |
Expression |
1 |
|
liminflelimsupuz.1 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
2 |
|
liminflelimsupuz.2 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
3 |
|
liminflelimsupuz.3 |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ* ) |
4 |
2
|
fvexi |
⊢ 𝑍 ∈ V |
5 |
4
|
a1i |
⊢ ( 𝜑 → 𝑍 ∈ V ) |
6 |
3 5
|
fexd |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
7 |
1 2
|
uzubico2 |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℝ ∃ 𝑗 ∈ ( 𝑘 [,) +∞ ) 𝑗 ∈ 𝑍 ) |
8 |
3
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝑍 ) |
9 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝐹 Fn 𝑍 ) |
10 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ 𝑍 ) |
11 |
|
id |
⊢ ( 𝑗 ∈ 𝑍 → 𝑗 ∈ 𝑍 ) |
12 |
2 11
|
uzxrd |
⊢ ( 𝑗 ∈ 𝑍 → 𝑗 ∈ ℝ* ) |
13 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
14 |
13
|
a1i |
⊢ ( 𝑗 ∈ 𝑍 → +∞ ∈ ℝ* ) |
15 |
12
|
xrleidd |
⊢ ( 𝑗 ∈ 𝑍 → 𝑗 ≤ 𝑗 ) |
16 |
2 11
|
uzred |
⊢ ( 𝑗 ∈ 𝑍 → 𝑗 ∈ ℝ ) |
17 |
|
ltpnf |
⊢ ( 𝑗 ∈ ℝ → 𝑗 < +∞ ) |
18 |
16 17
|
syl |
⊢ ( 𝑗 ∈ 𝑍 → 𝑗 < +∞ ) |
19 |
12 14 12 15 18
|
elicod |
⊢ ( 𝑗 ∈ 𝑍 → 𝑗 ∈ ( 𝑗 [,) +∞ ) ) |
20 |
19
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ ( 𝑗 [,) +∞ ) ) |
21 |
9 10 20
|
fnfvimad |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑗 ) ∈ ( 𝐹 “ ( 𝑗 [,) +∞ ) ) ) |
22 |
3
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ* ) |
23 |
21 22
|
elind |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑗 ) ∈ ( ( 𝐹 “ ( 𝑗 [,) +∞ ) ) ∩ ℝ* ) ) |
24 |
23
|
ne0d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ( 𝐹 “ ( 𝑗 [,) +∞ ) ) ∩ ℝ* ) ≠ ∅ ) |
25 |
24
|
ex |
⊢ ( 𝜑 → ( 𝑗 ∈ 𝑍 → ( ( 𝐹 “ ( 𝑗 [,) +∞ ) ) ∩ ℝ* ) ≠ ∅ ) ) |
26 |
25
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) ∧ 𝑗 ∈ ( 𝑘 [,) +∞ ) ) → ( 𝑗 ∈ 𝑍 → ( ( 𝐹 “ ( 𝑗 [,) +∞ ) ) ∩ ℝ* ) ≠ ∅ ) ) |
27 |
26
|
reximdva |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) → ( ∃ 𝑗 ∈ ( 𝑘 [,) +∞ ) 𝑗 ∈ 𝑍 → ∃ 𝑗 ∈ ( 𝑘 [,) +∞ ) ( ( 𝐹 “ ( 𝑗 [,) +∞ ) ) ∩ ℝ* ) ≠ ∅ ) ) |
28 |
27
|
ralimdva |
⊢ ( 𝜑 → ( ∀ 𝑘 ∈ ℝ ∃ 𝑗 ∈ ( 𝑘 [,) +∞ ) 𝑗 ∈ 𝑍 → ∀ 𝑘 ∈ ℝ ∃ 𝑗 ∈ ( 𝑘 [,) +∞ ) ( ( 𝐹 “ ( 𝑗 [,) +∞ ) ) ∩ ℝ* ) ≠ ∅ ) ) |
29 |
7 28
|
mpd |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℝ ∃ 𝑗 ∈ ( 𝑘 [,) +∞ ) ( ( 𝐹 “ ( 𝑗 [,) +∞ ) ) ∩ ℝ* ) ≠ ∅ ) |
30 |
6 29
|
liminflelimsup |
⊢ ( 𝜑 → ( lim inf ‘ 𝐹 ) ≤ ( lim sup ‘ 𝐹 ) ) |