Metamath Proof Explorer


Theorem uzubico2

Description: The upper integers are unbounded above. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses uzubico2.1 ( 𝜑𝑀 ∈ ℤ )
uzubico2.2 𝑍 = ( ℤ𝑀 )
Assertion uzubico2 ( 𝜑 → ∀ 𝑥 ∈ ℝ ∃ 𝑘 ∈ ( 𝑥 [,) +∞ ) 𝑘𝑍 )

Proof

Step Hyp Ref Expression
1 uzubico2.1 ( 𝜑𝑀 ∈ ℤ )
2 uzubico2.2 𝑍 = ( ℤ𝑀 )
3 1 2 uzubioo2 ( 𝜑 → ∀ 𝑥 ∈ ℝ ∃ 𝑘 ∈ ( 𝑥 (,) +∞ ) 𝑘𝑍 )
4 ioossico ( 𝑥 (,) +∞ ) ⊆ ( 𝑥 [,) +∞ )
5 ssrexv ( ( 𝑥 (,) +∞ ) ⊆ ( 𝑥 [,) +∞ ) → ( ∃ 𝑘 ∈ ( 𝑥 (,) +∞ ) 𝑘𝑍 → ∃ 𝑘 ∈ ( 𝑥 [,) +∞ ) 𝑘𝑍 ) )
6 4 5 ax-mp ( ∃ 𝑘 ∈ ( 𝑥 (,) +∞ ) 𝑘𝑍 → ∃ 𝑘 ∈ ( 𝑥 [,) +∞ ) 𝑘𝑍 )
7 6 ralimi ( ∀ 𝑥 ∈ ℝ ∃ 𝑘 ∈ ( 𝑥 (,) +∞ ) 𝑘𝑍 → ∀ 𝑥 ∈ ℝ ∃ 𝑘 ∈ ( 𝑥 [,) +∞ ) 𝑘𝑍 )
8 3 7 syl ( 𝜑 → ∀ 𝑥 ∈ ℝ ∃ 𝑘 ∈ ( 𝑥 [,) +∞ ) 𝑘𝑍 )