Description: The upper integers are unbounded above. (Contributed by Glauco Siliprandi, 2-Jan-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uzubico2.1 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| uzubico2.2 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | ||
| Assertion | uzubico2 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ ∃ 𝑘 ∈ ( 𝑥 [,) +∞ ) 𝑘 ∈ 𝑍 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzubico2.1 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 2 | uzubico2.2 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 3 | 1 2 | uzubioo2 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ ∃ 𝑘 ∈ ( 𝑥 (,) +∞ ) 𝑘 ∈ 𝑍 ) |
| 4 | ioossico | ⊢ ( 𝑥 (,) +∞ ) ⊆ ( 𝑥 [,) +∞ ) | |
| 5 | ssrexv | ⊢ ( ( 𝑥 (,) +∞ ) ⊆ ( 𝑥 [,) +∞ ) → ( ∃ 𝑘 ∈ ( 𝑥 (,) +∞ ) 𝑘 ∈ 𝑍 → ∃ 𝑘 ∈ ( 𝑥 [,) +∞ ) 𝑘 ∈ 𝑍 ) ) | |
| 6 | 4 5 | ax-mp | ⊢ ( ∃ 𝑘 ∈ ( 𝑥 (,) +∞ ) 𝑘 ∈ 𝑍 → ∃ 𝑘 ∈ ( 𝑥 [,) +∞ ) 𝑘 ∈ 𝑍 ) |
| 7 | 6 | ralimi | ⊢ ( ∀ 𝑥 ∈ ℝ ∃ 𝑘 ∈ ( 𝑥 (,) +∞ ) 𝑘 ∈ 𝑍 → ∀ 𝑥 ∈ ℝ ∃ 𝑘 ∈ ( 𝑥 [,) +∞ ) 𝑘 ∈ 𝑍 ) |
| 8 | 3 7 | syl | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ ∃ 𝑘 ∈ ( 𝑥 [,) +∞ ) 𝑘 ∈ 𝑍 ) |