Metamath Proof Explorer


Theorem uzubico2

Description: The upper integers are unbounded above. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses uzubico2.1 φ M
uzubico2.2 Z = M
Assertion uzubico2 φ x k x +∞ k Z

Proof

Step Hyp Ref Expression
1 uzubico2.1 φ M
2 uzubico2.2 Z = M
3 1 2 uzubioo2 φ x k x +∞ k Z
4 ioossico x +∞ x +∞
5 ssrexv x +∞ x +∞ k x +∞ k Z k x +∞ k Z
6 4 5 ax-mp k x +∞ k Z k x +∞ k Z
7 6 ralimi x k x +∞ k Z x k x +∞ k Z
8 3 7 syl φ x k x +∞ k Z