Metamath Proof Explorer


Theorem iocgtlbd

Description: An element of a left-open right-closed interval is larger than its lower bound. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses iocgtlbd.1 ( 𝜑𝐴 ∈ ℝ* )
iocgtlbd.2 ( 𝜑𝐵 ∈ ℝ* )
iocgtlbd.3 ( 𝜑𝐶 ∈ ( 𝐴 (,] 𝐵 ) )
Assertion iocgtlbd ( 𝜑𝐴 < 𝐶 )

Proof

Step Hyp Ref Expression
1 iocgtlbd.1 ( 𝜑𝐴 ∈ ℝ* )
2 iocgtlbd.2 ( 𝜑𝐵 ∈ ℝ* )
3 iocgtlbd.3 ( 𝜑𝐶 ∈ ( 𝐴 (,] 𝐵 ) )
4 iocgtlb ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → 𝐴 < 𝐶 )
5 1 2 3 4 syl3anc ( 𝜑𝐴 < 𝐶 )