Metamath Proof Explorer


Theorem iocgtlbd

Description: An element of a left-open right-closed interval is larger than its lower bound. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses iocgtlbd.1
|- ( ph -> A e. RR* )
iocgtlbd.2
|- ( ph -> B e. RR* )
iocgtlbd.3
|- ( ph -> C e. ( A (,] B ) )
Assertion iocgtlbd
|- ( ph -> A < C )

Proof

Step Hyp Ref Expression
1 iocgtlbd.1
 |-  ( ph -> A e. RR* )
2 iocgtlbd.2
 |-  ( ph -> B e. RR* )
3 iocgtlbd.3
 |-  ( ph -> C e. ( A (,] B ) )
4 iocgtlb
 |-  ( ( A e. RR* /\ B e. RR* /\ C e. ( A (,] B ) ) -> A < C )
5 1 2 3 4 syl3anc
 |-  ( ph -> A < C )