Step |
Hyp |
Ref |
Expression |
1 |
|
liminflelimsupuz.1 |
|- ( ph -> M e. ZZ ) |
2 |
|
liminflelimsupuz.2 |
|- Z = ( ZZ>= ` M ) |
3 |
|
liminflelimsupuz.3 |
|- ( ph -> F : Z --> RR* ) |
4 |
2
|
fvexi |
|- Z e. _V |
5 |
4
|
a1i |
|- ( ph -> Z e. _V ) |
6 |
3 5
|
fexd |
|- ( ph -> F e. _V ) |
7 |
1 2
|
uzubico2 |
|- ( ph -> A. k e. RR E. j e. ( k [,) +oo ) j e. Z ) |
8 |
3
|
ffnd |
|- ( ph -> F Fn Z ) |
9 |
8
|
adantr |
|- ( ( ph /\ j e. Z ) -> F Fn Z ) |
10 |
|
simpr |
|- ( ( ph /\ j e. Z ) -> j e. Z ) |
11 |
|
id |
|- ( j e. Z -> j e. Z ) |
12 |
2 11
|
uzxrd |
|- ( j e. Z -> j e. RR* ) |
13 |
|
pnfxr |
|- +oo e. RR* |
14 |
13
|
a1i |
|- ( j e. Z -> +oo e. RR* ) |
15 |
12
|
xrleidd |
|- ( j e. Z -> j <_ j ) |
16 |
2 11
|
uzred |
|- ( j e. Z -> j e. RR ) |
17 |
|
ltpnf |
|- ( j e. RR -> j < +oo ) |
18 |
16 17
|
syl |
|- ( j e. Z -> j < +oo ) |
19 |
12 14 12 15 18
|
elicod |
|- ( j e. Z -> j e. ( j [,) +oo ) ) |
20 |
19
|
adantl |
|- ( ( ph /\ j e. Z ) -> j e. ( j [,) +oo ) ) |
21 |
9 10 20
|
fnfvimad |
|- ( ( ph /\ j e. Z ) -> ( F ` j ) e. ( F " ( j [,) +oo ) ) ) |
22 |
3
|
ffvelrnda |
|- ( ( ph /\ j e. Z ) -> ( F ` j ) e. RR* ) |
23 |
21 22
|
elind |
|- ( ( ph /\ j e. Z ) -> ( F ` j ) e. ( ( F " ( j [,) +oo ) ) i^i RR* ) ) |
24 |
23
|
ne0d |
|- ( ( ph /\ j e. Z ) -> ( ( F " ( j [,) +oo ) ) i^i RR* ) =/= (/) ) |
25 |
24
|
ex |
|- ( ph -> ( j e. Z -> ( ( F " ( j [,) +oo ) ) i^i RR* ) =/= (/) ) ) |
26 |
25
|
ad2antrr |
|- ( ( ( ph /\ k e. RR ) /\ j e. ( k [,) +oo ) ) -> ( j e. Z -> ( ( F " ( j [,) +oo ) ) i^i RR* ) =/= (/) ) ) |
27 |
26
|
reximdva |
|- ( ( ph /\ k e. RR ) -> ( E. j e. ( k [,) +oo ) j e. Z -> E. j e. ( k [,) +oo ) ( ( F " ( j [,) +oo ) ) i^i RR* ) =/= (/) ) ) |
28 |
27
|
ralimdva |
|- ( ph -> ( A. k e. RR E. j e. ( k [,) +oo ) j e. Z -> A. k e. RR E. j e. ( k [,) +oo ) ( ( F " ( j [,) +oo ) ) i^i RR* ) =/= (/) ) ) |
29 |
7 28
|
mpd |
|- ( ph -> A. k e. RR E. j e. ( k [,) +oo ) ( ( F " ( j [,) +oo ) ) i^i RR* ) =/= (/) ) |
30 |
6 29
|
liminflelimsup |
|- ( ph -> ( liminf ` F ) <_ ( limsup ` F ) ) |