| Step | Hyp | Ref | Expression | 
						
							| 1 |  | liminflelimsupuz.1 |  |-  ( ph -> M e. ZZ ) | 
						
							| 2 |  | liminflelimsupuz.2 |  |-  Z = ( ZZ>= ` M ) | 
						
							| 3 |  | liminflelimsupuz.3 |  |-  ( ph -> F : Z --> RR* ) | 
						
							| 4 | 2 | fvexi |  |-  Z e. _V | 
						
							| 5 | 4 | a1i |  |-  ( ph -> Z e. _V ) | 
						
							| 6 | 3 5 | fexd |  |-  ( ph -> F e. _V ) | 
						
							| 7 | 1 2 | uzubico2 |  |-  ( ph -> A. k e. RR E. j e. ( k [,) +oo ) j e. Z ) | 
						
							| 8 | 3 | ffnd |  |-  ( ph -> F Fn Z ) | 
						
							| 9 | 8 | adantr |  |-  ( ( ph /\ j e. Z ) -> F Fn Z ) | 
						
							| 10 |  | simpr |  |-  ( ( ph /\ j e. Z ) -> j e. Z ) | 
						
							| 11 |  | id |  |-  ( j e. Z -> j e. Z ) | 
						
							| 12 | 2 11 | uzxrd |  |-  ( j e. Z -> j e. RR* ) | 
						
							| 13 |  | pnfxr |  |-  +oo e. RR* | 
						
							| 14 | 13 | a1i |  |-  ( j e. Z -> +oo e. RR* ) | 
						
							| 15 | 12 | xrleidd |  |-  ( j e. Z -> j <_ j ) | 
						
							| 16 | 2 11 | uzred |  |-  ( j e. Z -> j e. RR ) | 
						
							| 17 |  | ltpnf |  |-  ( j e. RR -> j < +oo ) | 
						
							| 18 | 16 17 | syl |  |-  ( j e. Z -> j < +oo ) | 
						
							| 19 | 12 14 12 15 18 | elicod |  |-  ( j e. Z -> j e. ( j [,) +oo ) ) | 
						
							| 20 | 19 | adantl |  |-  ( ( ph /\ j e. Z ) -> j e. ( j [,) +oo ) ) | 
						
							| 21 | 9 10 20 | fnfvimad |  |-  ( ( ph /\ j e. Z ) -> ( F ` j ) e. ( F " ( j [,) +oo ) ) ) | 
						
							| 22 | 3 | ffvelcdmda |  |-  ( ( ph /\ j e. Z ) -> ( F ` j ) e. RR* ) | 
						
							| 23 | 21 22 | elind |  |-  ( ( ph /\ j e. Z ) -> ( F ` j ) e. ( ( F " ( j [,) +oo ) ) i^i RR* ) ) | 
						
							| 24 | 23 | ne0d |  |-  ( ( ph /\ j e. Z ) -> ( ( F " ( j [,) +oo ) ) i^i RR* ) =/= (/) ) | 
						
							| 25 | 24 | ex |  |-  ( ph -> ( j e. Z -> ( ( F " ( j [,) +oo ) ) i^i RR* ) =/= (/) ) ) | 
						
							| 26 | 25 | ad2antrr |  |-  ( ( ( ph /\ k e. RR ) /\ j e. ( k [,) +oo ) ) -> ( j e. Z -> ( ( F " ( j [,) +oo ) ) i^i RR* ) =/= (/) ) ) | 
						
							| 27 | 26 | reximdva |  |-  ( ( ph /\ k e. RR ) -> ( E. j e. ( k [,) +oo ) j e. Z -> E. j e. ( k [,) +oo ) ( ( F " ( j [,) +oo ) ) i^i RR* ) =/= (/) ) ) | 
						
							| 28 | 27 | ralimdva |  |-  ( ph -> ( A. k e. RR E. j e. ( k [,) +oo ) j e. Z -> A. k e. RR E. j e. ( k [,) +oo ) ( ( F " ( j [,) +oo ) ) i^i RR* ) =/= (/) ) ) | 
						
							| 29 | 7 28 | mpd |  |-  ( ph -> A. k e. RR E. j e. ( k [,) +oo ) ( ( F " ( j [,) +oo ) ) i^i RR* ) =/= (/) ) | 
						
							| 30 | 6 29 | liminflelimsup |  |-  ( ph -> ( liminf ` F ) <_ ( limsup ` F ) ) |