Step |
Hyp |
Ref |
Expression |
1 |
|
liminfvalxrmpt.1 |
|- F/ x ph |
2 |
|
liminfvalxrmpt.2 |
|- ( ph -> A e. V ) |
3 |
|
liminfvalxrmpt.3 |
|- ( ( ph /\ x e. A ) -> B e. RR* ) |
4 |
|
nfmpt1 |
|- F/_ x ( x e. A |-> B ) |
5 |
1 3
|
fmptd2f |
|- ( ph -> ( x e. A |-> B ) : A --> RR* ) |
6 |
4 2 5
|
liminfvalxr |
|- ( ph -> ( liminf ` ( x e. A |-> B ) ) = -e ( limsup ` ( x e. A |-> -e ( ( x e. A |-> B ) ` x ) ) ) ) |
7 |
|
eqidd |
|- ( ph -> ( x e. A |-> B ) = ( x e. A |-> B ) ) |
8 |
7 3
|
fvmpt2d |
|- ( ( ph /\ x e. A ) -> ( ( x e. A |-> B ) ` x ) = B ) |
9 |
8
|
xnegeqd |
|- ( ( ph /\ x e. A ) -> -e ( ( x e. A |-> B ) ` x ) = -e B ) |
10 |
1 9
|
mpteq2da |
|- ( ph -> ( x e. A |-> -e ( ( x e. A |-> B ) ` x ) ) = ( x e. A |-> -e B ) ) |
11 |
10
|
fveq2d |
|- ( ph -> ( limsup ` ( x e. A |-> -e ( ( x e. A |-> B ) ` x ) ) ) = ( limsup ` ( x e. A |-> -e B ) ) ) |
12 |
11
|
xnegeqd |
|- ( ph -> -e ( limsup ` ( x e. A |-> -e ( ( x e. A |-> B ) ` x ) ) ) = -e ( limsup ` ( x e. A |-> -e B ) ) ) |
13 |
6 12
|
eqtrd |
|- ( ph -> ( liminf ` ( x e. A |-> B ) ) = -e ( limsup ` ( x e. A |-> -e B ) ) ) |