Metamath Proof Explorer


Theorem liminfvalxrmpt

Description: Alternate definition of liminf when F is an extended real-valued function. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses liminfvalxrmpt.1 xφ
liminfvalxrmpt.2 φAV
liminfvalxrmpt.3 φxAB*
Assertion liminfvalxrmpt φlim infxAB=lim supxAB

Proof

Step Hyp Ref Expression
1 liminfvalxrmpt.1 xφ
2 liminfvalxrmpt.2 φAV
3 liminfvalxrmpt.3 φxAB*
4 nfmpt1 _xxAB
5 1 3 fmptd2f φxAB:A*
6 4 2 5 liminfvalxr φlim infxAB=lim supxAxABx
7 eqidd φxAB=xAB
8 7 3 fvmpt2d φxAxABx=B
9 8 xnegeqd φxAxABx=B
10 1 9 mpteq2da φxAxABx=xAB
11 10 fveq2d φlim supxAxABx=lim supxAB
12 11 xnegeqd φlim supxAxABx=lim supxAB
13 6 12 eqtrd φlim infxAB=lim supxAB