Metamath Proof Explorer


Theorem liminfvalxrmpt

Description: Alternate definition of liminf when F is an extended real-valued function. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses liminfvalxrmpt.1 x φ
liminfvalxrmpt.2 φ A V
liminfvalxrmpt.3 φ x A B *
Assertion liminfvalxrmpt φ lim inf x A B = lim sup x A B

Proof

Step Hyp Ref Expression
1 liminfvalxrmpt.1 x φ
2 liminfvalxrmpt.2 φ A V
3 liminfvalxrmpt.3 φ x A B *
4 nfmpt1 _ x x A B
5 1 3 fmptd2f φ x A B : A *
6 4 2 5 liminfvalxr φ lim inf x A B = lim sup x A x A B x
7 eqidd φ x A B = x A B
8 7 3 fvmpt2d φ x A x A B x = B
9 8 xnegeqd φ x A x A B x = B
10 1 9 mpteq2da φ x A x A B x = x A B
11 10 fveq2d φ lim sup x A x A B x = lim sup x A B
12 11 xnegeqd φ lim sup x A x A B x = lim sup x A B
13 6 12 eqtrd φ lim inf x A B = lim sup x A B