Metamath Proof Explorer


Theorem liminfresuz2

Description: If the domain of a function is a subset of the integers, the inferior limit doesn't change when the function is restricted to an upper set of integers. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses liminfresuz2.1 φ M
liminfresuz2.2 Z = M
liminfresuz2.3 φ F V
liminfresuz2.4 φ dom F
Assertion liminfresuz2 φ lim inf F Z = lim inf F

Proof

Step Hyp Ref Expression
1 liminfresuz2.1 φ M
2 liminfresuz2.2 Z = M
3 liminfresuz2.3 φ F V
4 liminfresuz2.4 φ dom F
5 dmresss dom F dom F
6 5 a1i φ dom F dom F
7 6 4 sstrd φ dom F
8 1 2 3 7 liminfresuz φ lim inf F Z = lim inf F