Metamath Proof Explorer


Theorem liminfgelimsupuz

Description: The inferior limit is greater than or equal to the superior limit if and only if they are equal. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses liminfgelimsupuz.1 φ M
liminfgelimsupuz.2 Z = M
liminfgelimsupuz.3 φ F : Z *
Assertion liminfgelimsupuz φ lim sup F lim inf F lim inf F = lim sup F

Proof

Step Hyp Ref Expression
1 liminfgelimsupuz.1 φ M
2 liminfgelimsupuz.2 Z = M
3 liminfgelimsupuz.3 φ F : Z *
4 2 fvexi Z V
5 4 a1i φ Z V
6 3 5 fexd φ F V
7 6 liminfcld φ lim inf F *
8 7 adantr φ lim sup F lim inf F lim inf F *
9 6 limsupcld φ lim sup F *
10 9 adantr φ lim sup F lim inf F lim sup F *
11 1 2 3 liminflelimsupuz φ lim inf F lim sup F
12 11 adantr φ lim sup F lim inf F lim inf F lim sup F
13 simpr φ lim sup F lim inf F lim sup F lim inf F
14 8 10 12 13 xrletrid φ lim sup F lim inf F lim inf F = lim sup F
15 9 adantr φ lim inf F = lim sup F lim sup F *
16 id lim inf F = lim sup F lim inf F = lim sup F
17 16 eqcomd lim inf F = lim sup F lim sup F = lim inf F
18 17 adantl φ lim inf F = lim sup F lim sup F = lim inf F
19 15 18 xreqled φ lim inf F = lim sup F lim sup F lim inf F
20 14 19 impbida φ lim sup F lim inf F lim inf F = lim sup F