Metamath Proof Explorer


Theorem xreqled

Description: Equality implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses xreqled.1 φA*
xreqled.2 φA=B
Assertion xreqled φAB

Proof

Step Hyp Ref Expression
1 xreqled.1 φA*
2 xreqled.2 φA=B
3 xreqle A*A=BAB
4 1 2 3 syl2anc φAB