Description: Equality implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 17-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xreqled.1 | |- ( ph -> A e. RR* ) |
|
| xreqled.2 | |- ( ph -> A = B ) |
||
| Assertion | xreqled | |- ( ph -> A <_ B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xreqled.1 | |- ( ph -> A e. RR* ) |
|
| 2 | xreqled.2 | |- ( ph -> A = B ) |
|
| 3 | xreqle | |- ( ( A e. RR* /\ A = B ) -> A <_ B ) |
|
| 4 | 1 2 3 | syl2anc | |- ( ph -> A <_ B ) |