Metamath Proof Explorer


Theorem liminfval4

Description: Alternate definition of liminf when the given function is eventually real-valued. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses liminfval4.x x φ
liminfval4.a φ A V
liminfval4.m φ M
liminfval4.b φ x A M +∞ B
Assertion liminfval4 φ lim inf x A B = lim sup x A B

Proof

Step Hyp Ref Expression
1 liminfval4.x x φ
2 liminfval4.a φ A V
3 liminfval4.m φ M
4 liminfval4.b φ x A M +∞ B
5 inss1 A M +∞ A
6 5 a1i φ A M +∞ A
7 2 6 ssexd φ A M +∞ V
8 4 rexrd φ x A M +∞ B *
9 1 7 8 liminfvalxrmpt φ lim inf x A M +∞ B = lim sup x A M +∞ B
10 4 rexnegd φ x A M +∞ B = B
11 1 10 mpteq2da φ x A M +∞ B = x A M +∞ B
12 11 fveq2d φ lim sup x A M +∞ B = lim sup x A M +∞ B
13 12 xnegeqd φ lim sup x A M +∞ B = lim sup x A M +∞ B
14 9 13 eqtrd φ lim inf x A M +∞ B = lim sup x A M +∞ B
15 eqid M +∞ = M +∞
16 3 15 2 liminfresicompt φ lim inf x A M +∞ B = lim inf x A B
17 16 eqcomd φ lim inf x A B = lim inf x A M +∞ B
18 2 3 15 limsupresicompt φ lim sup x A B = lim sup x A M +∞ B
19 18 xnegeqd φ lim sup x A B = lim sup x A M +∞ B
20 14 17 19 3eqtr4d φ lim inf x A B = lim sup x A B