Metamath Proof Explorer


Theorem liminfval4

Description: Alternate definition of liminf when the given function is eventually real-valued. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses liminfval4.x 𝑥 𝜑
liminfval4.a ( 𝜑𝐴𝑉 )
liminfval4.m ( 𝜑𝑀 ∈ ℝ )
liminfval4.b ( ( 𝜑𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ) → 𝐵 ∈ ℝ )
Assertion liminfval4 ( 𝜑 → ( lim inf ‘ ( 𝑥𝐴𝐵 ) ) = -𝑒 ( lim sup ‘ ( 𝑥𝐴 ↦ - 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 liminfval4.x 𝑥 𝜑
2 liminfval4.a ( 𝜑𝐴𝑉 )
3 liminfval4.m ( 𝜑𝑀 ∈ ℝ )
4 liminfval4.b ( ( 𝜑𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ) → 𝐵 ∈ ℝ )
5 inss1 ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ⊆ 𝐴
6 5 a1i ( 𝜑 → ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ⊆ 𝐴 )
7 2 6 ssexd ( 𝜑 → ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ∈ V )
8 4 rexrd ( ( 𝜑𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ) → 𝐵 ∈ ℝ* )
9 1 7 8 liminfvalxrmpt ( 𝜑 → ( lim inf ‘ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ↦ 𝐵 ) ) = -𝑒 ( lim sup ‘ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ↦ -𝑒 𝐵 ) ) )
10 4 rexnegd ( ( 𝜑𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ) → -𝑒 𝐵 = - 𝐵 )
11 1 10 mpteq2da ( 𝜑 → ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ↦ -𝑒 𝐵 ) = ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ↦ - 𝐵 ) )
12 11 fveq2d ( 𝜑 → ( lim sup ‘ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ↦ -𝑒 𝐵 ) ) = ( lim sup ‘ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ↦ - 𝐵 ) ) )
13 12 xnegeqd ( 𝜑 → -𝑒 ( lim sup ‘ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ↦ -𝑒 𝐵 ) ) = -𝑒 ( lim sup ‘ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ↦ - 𝐵 ) ) )
14 9 13 eqtrd ( 𝜑 → ( lim inf ‘ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ↦ 𝐵 ) ) = -𝑒 ( lim sup ‘ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ↦ - 𝐵 ) ) )
15 eqid ( 𝑀 [,) +∞ ) = ( 𝑀 [,) +∞ )
16 3 15 2 liminfresicompt ( 𝜑 → ( lim inf ‘ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ↦ 𝐵 ) ) = ( lim inf ‘ ( 𝑥𝐴𝐵 ) ) )
17 16 eqcomd ( 𝜑 → ( lim inf ‘ ( 𝑥𝐴𝐵 ) ) = ( lim inf ‘ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ↦ 𝐵 ) ) )
18 2 3 15 limsupresicompt ( 𝜑 → ( lim sup ‘ ( 𝑥𝐴 ↦ - 𝐵 ) ) = ( lim sup ‘ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ↦ - 𝐵 ) ) )
19 18 xnegeqd ( 𝜑 → -𝑒 ( lim sup ‘ ( 𝑥𝐴 ↦ - 𝐵 ) ) = -𝑒 ( lim sup ‘ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ↦ - 𝐵 ) ) )
20 14 17 19 3eqtr4d ( 𝜑 → ( lim inf ‘ ( 𝑥𝐴𝐵 ) ) = -𝑒 ( lim sup ‘ ( 𝑥𝐴 ↦ - 𝐵 ) ) )