Step |
Hyp |
Ref |
Expression |
1 |
|
liminfval4.x |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
liminfval4.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
3 |
|
liminfval4.m |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
4 |
|
liminfval4.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ) → 𝐵 ∈ ℝ ) |
5 |
|
inss1 |
⊢ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ⊆ 𝐴 |
6 |
5
|
a1i |
⊢ ( 𝜑 → ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ⊆ 𝐴 ) |
7 |
2 6
|
ssexd |
⊢ ( 𝜑 → ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ∈ V ) |
8 |
4
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ) → 𝐵 ∈ ℝ* ) |
9 |
1 7 8
|
liminfvalxrmpt |
⊢ ( 𝜑 → ( lim inf ‘ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ↦ 𝐵 ) ) = -𝑒 ( lim sup ‘ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ↦ -𝑒 𝐵 ) ) ) |
10 |
4
|
rexnegd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ) → -𝑒 𝐵 = - 𝐵 ) |
11 |
1 10
|
mpteq2da |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ↦ -𝑒 𝐵 ) = ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ↦ - 𝐵 ) ) |
12 |
11
|
fveq2d |
⊢ ( 𝜑 → ( lim sup ‘ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ↦ -𝑒 𝐵 ) ) = ( lim sup ‘ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ↦ - 𝐵 ) ) ) |
13 |
12
|
xnegeqd |
⊢ ( 𝜑 → -𝑒 ( lim sup ‘ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ↦ -𝑒 𝐵 ) ) = -𝑒 ( lim sup ‘ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ↦ - 𝐵 ) ) ) |
14 |
9 13
|
eqtrd |
⊢ ( 𝜑 → ( lim inf ‘ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ↦ 𝐵 ) ) = -𝑒 ( lim sup ‘ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ↦ - 𝐵 ) ) ) |
15 |
|
eqid |
⊢ ( 𝑀 [,) +∞ ) = ( 𝑀 [,) +∞ ) |
16 |
3 15 2
|
liminfresicompt |
⊢ ( 𝜑 → ( lim inf ‘ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ↦ 𝐵 ) ) = ( lim inf ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ) |
17 |
16
|
eqcomd |
⊢ ( 𝜑 → ( lim inf ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) = ( lim inf ‘ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ↦ 𝐵 ) ) ) |
18 |
2 3 15
|
limsupresicompt |
⊢ ( 𝜑 → ( lim sup ‘ ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) ) = ( lim sup ‘ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ↦ - 𝐵 ) ) ) |
19 |
18
|
xnegeqd |
⊢ ( 𝜑 → -𝑒 ( lim sup ‘ ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) ) = -𝑒 ( lim sup ‘ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ↦ - 𝐵 ) ) ) |
20 |
14 17 19
|
3eqtr4d |
⊢ ( 𝜑 → ( lim inf ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) = -𝑒 ( lim sup ‘ ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) ) ) |