Metamath Proof Explorer


Theorem liminfval3

Description: Alternate definition of liminf when the given function is eventually extended real-valued. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses liminfval3.x 𝑥 𝜑
liminfval3.a ( 𝜑𝐴𝑉 )
liminfval3.m ( 𝜑𝑀 ∈ ℝ )
liminfval3.b ( ( 𝜑𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ) → 𝐵 ∈ ℝ* )
Assertion liminfval3 ( 𝜑 → ( lim inf ‘ ( 𝑥𝐴𝐵 ) ) = -𝑒 ( lim sup ‘ ( 𝑥𝐴 ↦ -𝑒 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 liminfval3.x 𝑥 𝜑
2 liminfval3.a ( 𝜑𝐴𝑉 )
3 liminfval3.m ( 𝜑𝑀 ∈ ℝ )
4 liminfval3.b ( ( 𝜑𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ) → 𝐵 ∈ ℝ* )
5 inss1 ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ⊆ 𝐴
6 5 a1i ( 𝜑 → ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ⊆ 𝐴 )
7 2 6 ssexd ( 𝜑 → ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ∈ V )
8 1 7 4 liminfvalxrmpt ( 𝜑 → ( lim inf ‘ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ↦ 𝐵 ) ) = -𝑒 ( lim sup ‘ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ↦ -𝑒 𝐵 ) ) )
9 eqid ( 𝑀 [,) +∞ ) = ( 𝑀 [,) +∞ )
10 3 9 2 liminfresicompt ( 𝜑 → ( lim inf ‘ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ↦ 𝐵 ) ) = ( lim inf ‘ ( 𝑥𝐴𝐵 ) ) )
11 10 eqcomd ( 𝜑 → ( lim inf ‘ ( 𝑥𝐴𝐵 ) ) = ( lim inf ‘ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ↦ 𝐵 ) ) )
12 2 3 9 limsupresicompt ( 𝜑 → ( lim sup ‘ ( 𝑥𝐴 ↦ -𝑒 𝐵 ) ) = ( lim sup ‘ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ↦ -𝑒 𝐵 ) ) )
13 12 xnegeqd ( 𝜑 → -𝑒 ( lim sup ‘ ( 𝑥𝐴 ↦ -𝑒 𝐵 ) ) = -𝑒 ( lim sup ‘ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ↦ -𝑒 𝐵 ) ) )
14 8 11 13 3eqtr4d ( 𝜑 → ( lim inf ‘ ( 𝑥𝐴𝐵 ) ) = -𝑒 ( lim sup ‘ ( 𝑥𝐴 ↦ -𝑒 𝐵 ) ) )