Step |
Hyp |
Ref |
Expression |
1 |
|
liminfval3.x |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
liminfval3.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
3 |
|
liminfval3.m |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
4 |
|
liminfval3.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ) → 𝐵 ∈ ℝ* ) |
5 |
|
inss1 |
⊢ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ⊆ 𝐴 |
6 |
5
|
a1i |
⊢ ( 𝜑 → ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ⊆ 𝐴 ) |
7 |
2 6
|
ssexd |
⊢ ( 𝜑 → ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ∈ V ) |
8 |
1 7 4
|
liminfvalxrmpt |
⊢ ( 𝜑 → ( lim inf ‘ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ↦ 𝐵 ) ) = -𝑒 ( lim sup ‘ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ↦ -𝑒 𝐵 ) ) ) |
9 |
|
eqid |
⊢ ( 𝑀 [,) +∞ ) = ( 𝑀 [,) +∞ ) |
10 |
3 9 2
|
liminfresicompt |
⊢ ( 𝜑 → ( lim inf ‘ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ↦ 𝐵 ) ) = ( lim inf ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ) |
11 |
10
|
eqcomd |
⊢ ( 𝜑 → ( lim inf ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) = ( lim inf ‘ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ↦ 𝐵 ) ) ) |
12 |
2 3 9
|
limsupresicompt |
⊢ ( 𝜑 → ( lim sup ‘ ( 𝑥 ∈ 𝐴 ↦ -𝑒 𝐵 ) ) = ( lim sup ‘ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ↦ -𝑒 𝐵 ) ) ) |
13 |
12
|
xnegeqd |
⊢ ( 𝜑 → -𝑒 ( lim sup ‘ ( 𝑥 ∈ 𝐴 ↦ -𝑒 𝐵 ) ) = -𝑒 ( lim sup ‘ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ↦ -𝑒 𝐵 ) ) ) |
14 |
8 11 13
|
3eqtr4d |
⊢ ( 𝜑 → ( lim inf ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) = -𝑒 ( lim sup ‘ ( 𝑥 ∈ 𝐴 ↦ -𝑒 𝐵 ) ) ) |