| Step |
Hyp |
Ref |
Expression |
| 1 |
|
liminfequzmpt2.j |
⊢ Ⅎ 𝑗 𝜑 |
| 2 |
|
liminfequzmpt2.o |
⊢ Ⅎ 𝑗 𝐴 |
| 3 |
|
liminfequzmpt2.p |
⊢ Ⅎ 𝑗 𝐵 |
| 4 |
|
liminfequzmpt2.a |
⊢ 𝐴 = ( ℤ≥ ‘ 𝑀 ) |
| 5 |
|
liminfequzmpt2.b |
⊢ 𝐵 = ( ℤ≥ ‘ 𝑁 ) |
| 6 |
|
liminfequzmpt2.k |
⊢ ( 𝜑 → 𝐾 ∈ 𝐴 ) |
| 7 |
|
liminfequzmpt2.e |
⊢ ( 𝜑 → 𝐾 ∈ 𝐵 ) |
| 8 |
|
liminfequzmpt2.c |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → 𝐶 ∈ 𝑉 ) |
| 9 |
4 6
|
uzssd2 |
⊢ ( 𝜑 → ( ℤ≥ ‘ 𝐾 ) ⊆ 𝐴 ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ℤ≥ ‘ 𝐾 ) ⊆ 𝐴 ) |
| 11 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) |
| 12 |
10 11
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → 𝑗 ∈ 𝐴 ) |
| 13 |
8
|
elexd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → 𝐶 ∈ V ) |
| 14 |
12 13
|
jca |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝑗 ∈ 𝐴 ∧ 𝐶 ∈ V ) ) |
| 15 |
|
rabid |
⊢ ( 𝑗 ∈ { 𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V } ↔ ( 𝑗 ∈ 𝐴 ∧ 𝐶 ∈ V ) ) |
| 16 |
14 15
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → 𝑗 ∈ { 𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V } ) |
| 17 |
16
|
ex |
⊢ ( 𝜑 → ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) → 𝑗 ∈ { 𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V } ) ) |
| 18 |
1 17
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) 𝑗 ∈ { 𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V } ) |
| 19 |
|
nfcv |
⊢ Ⅎ 𝑗 ( ℤ≥ ‘ 𝐾 ) |
| 20 |
|
nfrab1 |
⊢ Ⅎ 𝑗 { 𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V } |
| 21 |
19 20
|
dfss3f |
⊢ ( ( ℤ≥ ‘ 𝐾 ) ⊆ { 𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V } ↔ ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) 𝑗 ∈ { 𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V } ) |
| 22 |
18 21
|
sylibr |
⊢ ( 𝜑 → ( ℤ≥ ‘ 𝐾 ) ⊆ { 𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V } ) |
| 23 |
20 19
|
resmptf |
⊢ ( ( ℤ≥ ‘ 𝐾 ) ⊆ { 𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V } → ( ( 𝑗 ∈ { 𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V } ↦ 𝐶 ) ↾ ( ℤ≥ ‘ 𝐾 ) ) = ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ 𝐶 ) ) |
| 24 |
22 23
|
syl |
⊢ ( 𝜑 → ( ( 𝑗 ∈ { 𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V } ↦ 𝐶 ) ↾ ( ℤ≥ ‘ 𝐾 ) ) = ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ 𝐶 ) ) |
| 25 |
24
|
eqcomd |
⊢ ( 𝜑 → ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ 𝐶 ) = ( ( 𝑗 ∈ { 𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V } ↦ 𝐶 ) ↾ ( ℤ≥ ‘ 𝐾 ) ) ) |
| 26 |
25
|
fveq2d |
⊢ ( 𝜑 → ( lim inf ‘ ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ 𝐶 ) ) = ( lim inf ‘ ( ( 𝑗 ∈ { 𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V } ↦ 𝐶 ) ↾ ( ℤ≥ ‘ 𝐾 ) ) ) ) |
| 27 |
4 6
|
eluzelz2d |
⊢ ( 𝜑 → 𝐾 ∈ ℤ ) |
| 28 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝐾 ) = ( ℤ≥ ‘ 𝐾 ) |
| 29 |
4
|
fvexi |
⊢ 𝐴 ∈ V |
| 30 |
2 29
|
rabexf |
⊢ { 𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V } ∈ V |
| 31 |
20 30
|
mptexf |
⊢ ( 𝑗 ∈ { 𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V } ↦ 𝐶 ) ∈ V |
| 32 |
31
|
a1i |
⊢ ( 𝜑 → ( 𝑗 ∈ { 𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V } ↦ 𝐶 ) ∈ V ) |
| 33 |
|
eqid |
⊢ ( 𝑗 ∈ { 𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V } ↦ 𝐶 ) = ( 𝑗 ∈ { 𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V } ↦ 𝐶 ) |
| 34 |
20 33
|
dmmptssf |
⊢ dom ( 𝑗 ∈ { 𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V } ↦ 𝐶 ) ⊆ { 𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V } |
| 35 |
2
|
ssrab2f |
⊢ { 𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V } ⊆ 𝐴 |
| 36 |
|
uzssz |
⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ |
| 37 |
4 36
|
eqsstri |
⊢ 𝐴 ⊆ ℤ |
| 38 |
35 37
|
sstri |
⊢ { 𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V } ⊆ ℤ |
| 39 |
34 38
|
sstri |
⊢ dom ( 𝑗 ∈ { 𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V } ↦ 𝐶 ) ⊆ ℤ |
| 40 |
39
|
a1i |
⊢ ( 𝜑 → dom ( 𝑗 ∈ { 𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V } ↦ 𝐶 ) ⊆ ℤ ) |
| 41 |
27 28 32 40
|
liminfresuz2 |
⊢ ( 𝜑 → ( lim inf ‘ ( ( 𝑗 ∈ { 𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V } ↦ 𝐶 ) ↾ ( ℤ≥ ‘ 𝐾 ) ) ) = ( lim inf ‘ ( 𝑗 ∈ { 𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V } ↦ 𝐶 ) ) ) |
| 42 |
26 41
|
eqtr2d |
⊢ ( 𝜑 → ( lim inf ‘ ( 𝑗 ∈ { 𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V } ↦ 𝐶 ) ) = ( lim inf ‘ ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ 𝐶 ) ) ) |
| 43 |
5 7
|
uzssd2 |
⊢ ( 𝜑 → ( ℤ≥ ‘ 𝐾 ) ⊆ 𝐵 ) |
| 44 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ℤ≥ ‘ 𝐾 ) ⊆ 𝐵 ) |
| 45 |
44 11
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → 𝑗 ∈ 𝐵 ) |
| 46 |
45 13
|
jca |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝑗 ∈ 𝐵 ∧ 𝐶 ∈ V ) ) |
| 47 |
|
rabid |
⊢ ( 𝑗 ∈ { 𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V } ↔ ( 𝑗 ∈ 𝐵 ∧ 𝐶 ∈ V ) ) |
| 48 |
46 47
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ) → 𝑗 ∈ { 𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V } ) |
| 49 |
48
|
ex |
⊢ ( 𝜑 → ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) → 𝑗 ∈ { 𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V } ) ) |
| 50 |
1 49
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) 𝑗 ∈ { 𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V } ) |
| 51 |
|
nfrab1 |
⊢ Ⅎ 𝑗 { 𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V } |
| 52 |
19 51
|
dfss3f |
⊢ ( ( ℤ≥ ‘ 𝐾 ) ⊆ { 𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V } ↔ ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) 𝑗 ∈ { 𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V } ) |
| 53 |
50 52
|
sylibr |
⊢ ( 𝜑 → ( ℤ≥ ‘ 𝐾 ) ⊆ { 𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V } ) |
| 54 |
51 19
|
resmptf |
⊢ ( ( ℤ≥ ‘ 𝐾 ) ⊆ { 𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V } → ( ( 𝑗 ∈ { 𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V } ↦ 𝐶 ) ↾ ( ℤ≥ ‘ 𝐾 ) ) = ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ 𝐶 ) ) |
| 55 |
53 54
|
syl |
⊢ ( 𝜑 → ( ( 𝑗 ∈ { 𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V } ↦ 𝐶 ) ↾ ( ℤ≥ ‘ 𝐾 ) ) = ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ 𝐶 ) ) |
| 56 |
55
|
eqcomd |
⊢ ( 𝜑 → ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ 𝐶 ) = ( ( 𝑗 ∈ { 𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V } ↦ 𝐶 ) ↾ ( ℤ≥ ‘ 𝐾 ) ) ) |
| 57 |
56
|
fveq2d |
⊢ ( 𝜑 → ( lim inf ‘ ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ 𝐶 ) ) = ( lim inf ‘ ( ( 𝑗 ∈ { 𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V } ↦ 𝐶 ) ↾ ( ℤ≥ ‘ 𝐾 ) ) ) ) |
| 58 |
5
|
fvexi |
⊢ 𝐵 ∈ V |
| 59 |
3 58
|
rabexf |
⊢ { 𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V } ∈ V |
| 60 |
51 59
|
mptexf |
⊢ ( 𝑗 ∈ { 𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V } ↦ 𝐶 ) ∈ V |
| 61 |
60
|
a1i |
⊢ ( 𝜑 → ( 𝑗 ∈ { 𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V } ↦ 𝐶 ) ∈ V ) |
| 62 |
|
eqid |
⊢ ( 𝑗 ∈ { 𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V } ↦ 𝐶 ) = ( 𝑗 ∈ { 𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V } ↦ 𝐶 ) |
| 63 |
51 62
|
dmmptssf |
⊢ dom ( 𝑗 ∈ { 𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V } ↦ 𝐶 ) ⊆ { 𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V } |
| 64 |
3
|
ssrab2f |
⊢ { 𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V } ⊆ 𝐵 |
| 65 |
|
uzssz |
⊢ ( ℤ≥ ‘ 𝑁 ) ⊆ ℤ |
| 66 |
5 65
|
eqsstri |
⊢ 𝐵 ⊆ ℤ |
| 67 |
64 66
|
sstri |
⊢ { 𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V } ⊆ ℤ |
| 68 |
63 67
|
sstri |
⊢ dom ( 𝑗 ∈ { 𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V } ↦ 𝐶 ) ⊆ ℤ |
| 69 |
68
|
a1i |
⊢ ( 𝜑 → dom ( 𝑗 ∈ { 𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V } ↦ 𝐶 ) ⊆ ℤ ) |
| 70 |
27 28 61 69
|
liminfresuz2 |
⊢ ( 𝜑 → ( lim inf ‘ ( ( 𝑗 ∈ { 𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V } ↦ 𝐶 ) ↾ ( ℤ≥ ‘ 𝐾 ) ) ) = ( lim inf ‘ ( 𝑗 ∈ { 𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V } ↦ 𝐶 ) ) ) |
| 71 |
57 70
|
eqtr2d |
⊢ ( 𝜑 → ( lim inf ‘ ( 𝑗 ∈ { 𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V } ↦ 𝐶 ) ) = ( lim inf ‘ ( 𝑗 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ 𝐶 ) ) ) |
| 72 |
42 71
|
eqtr4d |
⊢ ( 𝜑 → ( lim inf ‘ ( 𝑗 ∈ { 𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V } ↦ 𝐶 ) ) = ( lim inf ‘ ( 𝑗 ∈ { 𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V } ↦ 𝐶 ) ) ) |
| 73 |
|
eqid |
⊢ { 𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V } = { 𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V } |
| 74 |
2 73
|
mptssid |
⊢ ( 𝑗 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑗 ∈ { 𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V } ↦ 𝐶 ) |
| 75 |
74
|
fveq2i |
⊢ ( lim inf ‘ ( 𝑗 ∈ 𝐴 ↦ 𝐶 ) ) = ( lim inf ‘ ( 𝑗 ∈ { 𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V } ↦ 𝐶 ) ) |
| 76 |
75
|
a1i |
⊢ ( 𝜑 → ( lim inf ‘ ( 𝑗 ∈ 𝐴 ↦ 𝐶 ) ) = ( lim inf ‘ ( 𝑗 ∈ { 𝑗 ∈ 𝐴 ∣ 𝐶 ∈ V } ↦ 𝐶 ) ) ) |
| 77 |
|
eqid |
⊢ { 𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V } = { 𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V } |
| 78 |
3 77
|
mptssid |
⊢ ( 𝑗 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑗 ∈ { 𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V } ↦ 𝐶 ) |
| 79 |
78
|
fveq2i |
⊢ ( lim inf ‘ ( 𝑗 ∈ 𝐵 ↦ 𝐶 ) ) = ( lim inf ‘ ( 𝑗 ∈ { 𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V } ↦ 𝐶 ) ) |
| 80 |
79
|
a1i |
⊢ ( 𝜑 → ( lim inf ‘ ( 𝑗 ∈ 𝐵 ↦ 𝐶 ) ) = ( lim inf ‘ ( 𝑗 ∈ { 𝑗 ∈ 𝐵 ∣ 𝐶 ∈ V } ↦ 𝐶 ) ) ) |
| 81 |
72 76 80
|
3eqtr4d |
⊢ ( 𝜑 → ( lim inf ‘ ( 𝑗 ∈ 𝐴 ↦ 𝐶 ) ) = ( lim inf ‘ ( 𝑗 ∈ 𝐵 ↦ 𝐶 ) ) ) |