Step |
Hyp |
Ref |
Expression |
1 |
|
liminfvaluz.k |
⊢ Ⅎ 𝑘 𝜑 |
2 |
|
liminfvaluz.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
liminfvaluz.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
4 |
|
liminfvaluz.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ ℝ* ) |
5 |
3
|
fvexi |
⊢ 𝑍 ∈ V |
6 |
5
|
a1i |
⊢ ( 𝜑 → 𝑍 ∈ V ) |
7 |
2
|
zred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
8 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑍 ∩ ( 𝑀 [,) +∞ ) ) ) → 𝑘 ∈ ( 𝑍 ∩ ( 𝑀 [,) +∞ ) ) ) |
9 |
2 3
|
uzinico3 |
⊢ ( 𝜑 → 𝑍 = ( 𝑍 ∩ ( 𝑀 [,) +∞ ) ) ) |
10 |
9
|
eqcomd |
⊢ ( 𝜑 → ( 𝑍 ∩ ( 𝑀 [,) +∞ ) ) = 𝑍 ) |
11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑍 ∩ ( 𝑀 [,) +∞ ) ) ) → ( 𝑍 ∩ ( 𝑀 [,) +∞ ) ) = 𝑍 ) |
12 |
8 11
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑍 ∩ ( 𝑀 [,) +∞ ) ) ) → 𝑘 ∈ 𝑍 ) |
13 |
12 4
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑍 ∩ ( 𝑀 [,) +∞ ) ) ) → 𝐵 ∈ ℝ* ) |
14 |
1 6 7 13
|
liminfval3 |
⊢ ( 𝜑 → ( lim inf ‘ ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ) = -𝑒 ( lim sup ‘ ( 𝑘 ∈ 𝑍 ↦ -𝑒 𝐵 ) ) ) |