| Step |
Hyp |
Ref |
Expression |
| 1 |
|
liminfvaluz.k |
⊢ Ⅎ 𝑘 𝜑 |
| 2 |
|
liminfvaluz.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 3 |
|
liminfvaluz.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 4 |
|
liminfvaluz.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ ℝ* ) |
| 5 |
3
|
fvexi |
⊢ 𝑍 ∈ V |
| 6 |
5
|
a1i |
⊢ ( 𝜑 → 𝑍 ∈ V ) |
| 7 |
2
|
zred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 8 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑍 ∩ ( 𝑀 [,) +∞ ) ) ) → 𝑘 ∈ ( 𝑍 ∩ ( 𝑀 [,) +∞ ) ) ) |
| 9 |
2 3
|
uzinico3 |
⊢ ( 𝜑 → 𝑍 = ( 𝑍 ∩ ( 𝑀 [,) +∞ ) ) ) |
| 10 |
9
|
eqcomd |
⊢ ( 𝜑 → ( 𝑍 ∩ ( 𝑀 [,) +∞ ) ) = 𝑍 ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑍 ∩ ( 𝑀 [,) +∞ ) ) ) → ( 𝑍 ∩ ( 𝑀 [,) +∞ ) ) = 𝑍 ) |
| 12 |
8 11
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑍 ∩ ( 𝑀 [,) +∞ ) ) ) → 𝑘 ∈ 𝑍 ) |
| 13 |
12 4
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑍 ∩ ( 𝑀 [,) +∞ ) ) ) → 𝐵 ∈ ℝ* ) |
| 14 |
1 6 7 13
|
liminfval3 |
⊢ ( 𝜑 → ( lim inf ‘ ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ) = -𝑒 ( lim sup ‘ ( 𝑘 ∈ 𝑍 ↦ -𝑒 𝐵 ) ) ) |