| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nftru |
⊢ Ⅎ 𝑥 ⊤ |
| 2 |
|
0ex |
⊢ ∅ ∈ V |
| 3 |
2
|
a1i |
⊢ ( ⊤ → ∅ ∈ V ) |
| 4 |
|
0red |
⊢ ( ⊤ → 0 ∈ ℝ ) |
| 5 |
|
noel |
⊢ ¬ 𝑥 ∈ ∅ |
| 6 |
|
elinel1 |
⊢ ( 𝑥 ∈ ( ∅ ∩ ( 0 [,) +∞ ) ) → 𝑥 ∈ ∅ ) |
| 7 |
6
|
con3i |
⊢ ( ¬ 𝑥 ∈ ∅ → ¬ 𝑥 ∈ ( ∅ ∩ ( 0 [,) +∞ ) ) ) |
| 8 |
5 7
|
ax-mp |
⊢ ¬ 𝑥 ∈ ( ∅ ∩ ( 0 [,) +∞ ) ) |
| 9 |
|
pm2.21 |
⊢ ( ¬ 𝑥 ∈ ( ∅ ∩ ( 0 [,) +∞ ) ) → ( 𝑥 ∈ ( ∅ ∩ ( 0 [,) +∞ ) ) → ( ∅ ‘ 𝑥 ) ∈ ℝ* ) ) |
| 10 |
8 9
|
ax-mp |
⊢ ( 𝑥 ∈ ( ∅ ∩ ( 0 [,) +∞ ) ) → ( ∅ ‘ 𝑥 ) ∈ ℝ* ) |
| 11 |
10
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( ∅ ∩ ( 0 [,) +∞ ) ) ) → ( ∅ ‘ 𝑥 ) ∈ ℝ* ) |
| 12 |
1 3 4 11
|
liminfval3 |
⊢ ( ⊤ → ( lim inf ‘ ( 𝑥 ∈ ∅ ↦ ( ∅ ‘ 𝑥 ) ) ) = -𝑒 ( lim sup ‘ ( 𝑥 ∈ ∅ ↦ -𝑒 ( ∅ ‘ 𝑥 ) ) ) ) |
| 13 |
12
|
mptru |
⊢ ( lim inf ‘ ( 𝑥 ∈ ∅ ↦ ( ∅ ‘ 𝑥 ) ) ) = -𝑒 ( lim sup ‘ ( 𝑥 ∈ ∅ ↦ -𝑒 ( ∅ ‘ 𝑥 ) ) ) |
| 14 |
|
mpt0 |
⊢ ( 𝑥 ∈ ∅ ↦ ( ∅ ‘ 𝑥 ) ) = ∅ |
| 15 |
14
|
fveq2i |
⊢ ( lim inf ‘ ( 𝑥 ∈ ∅ ↦ ( ∅ ‘ 𝑥 ) ) ) = ( lim inf ‘ ∅ ) |
| 16 |
|
mpt0 |
⊢ ( 𝑥 ∈ ∅ ↦ -𝑒 ( ∅ ‘ 𝑥 ) ) = ∅ |
| 17 |
16
|
fveq2i |
⊢ ( lim sup ‘ ( 𝑥 ∈ ∅ ↦ -𝑒 ( ∅ ‘ 𝑥 ) ) ) = ( lim sup ‘ ∅ ) |
| 18 |
|
limsup0 |
⊢ ( lim sup ‘ ∅ ) = -∞ |
| 19 |
17 18
|
eqtri |
⊢ ( lim sup ‘ ( 𝑥 ∈ ∅ ↦ -𝑒 ( ∅ ‘ 𝑥 ) ) ) = -∞ |
| 20 |
19
|
xnegeqi |
⊢ -𝑒 ( lim sup ‘ ( 𝑥 ∈ ∅ ↦ -𝑒 ( ∅ ‘ 𝑥 ) ) ) = -𝑒 -∞ |
| 21 |
|
xnegmnf |
⊢ -𝑒 -∞ = +∞ |
| 22 |
20 21
|
eqtri |
⊢ -𝑒 ( lim sup ‘ ( 𝑥 ∈ ∅ ↦ -𝑒 ( ∅ ‘ 𝑥 ) ) ) = +∞ |
| 23 |
13 15 22
|
3eqtr3i |
⊢ ( lim inf ‘ ∅ ) = +∞ |