Step |
Hyp |
Ref |
Expression |
1 |
|
limsupval4.x |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
limsupval4.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
3 |
|
limsupval4.m |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
4 |
|
limsupval4.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ) → 𝐵 ∈ ℝ* ) |
5 |
|
ovex |
⊢ ( 𝑀 [,) +∞ ) ∈ V |
6 |
5
|
inex2 |
⊢ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ∈ V |
7 |
6
|
mptex |
⊢ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ↦ 𝐵 ) ∈ V |
8 |
|
limsupcl |
⊢ ( ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ↦ 𝐵 ) ∈ V → ( lim sup ‘ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ↦ 𝐵 ) ) ∈ ℝ* ) |
9 |
7 8
|
ax-mp |
⊢ ( lim sup ‘ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ↦ 𝐵 ) ) ∈ ℝ* |
10 |
9
|
a1i |
⊢ ( 𝜑 → ( lim sup ‘ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ↦ 𝐵 ) ) ∈ ℝ* ) |
11 |
10
|
xnegnegd |
⊢ ( 𝜑 → -𝑒 -𝑒 ( lim sup ‘ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ↦ 𝐵 ) ) = ( lim sup ‘ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ↦ 𝐵 ) ) ) |
12 |
11
|
eqcomd |
⊢ ( 𝜑 → ( lim sup ‘ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ↦ 𝐵 ) ) = -𝑒 -𝑒 ( lim sup ‘ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ↦ 𝐵 ) ) ) |
13 |
|
eqid |
⊢ ( 𝑀 [,) +∞ ) = ( 𝑀 [,) +∞ ) |
14 |
2 3 13
|
limsupresicompt |
⊢ ( 𝜑 → ( lim sup ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) = ( lim sup ‘ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ↦ 𝐵 ) ) ) |
15 |
4
|
xnegcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ) → -𝑒 𝐵 ∈ ℝ* ) |
16 |
1 2 3 15
|
liminfval3 |
⊢ ( 𝜑 → ( lim inf ‘ ( 𝑥 ∈ 𝐴 ↦ -𝑒 𝐵 ) ) = -𝑒 ( lim sup ‘ ( 𝑥 ∈ 𝐴 ↦ -𝑒 -𝑒 𝐵 ) ) ) |
17 |
2 3 13
|
limsupresicompt |
⊢ ( 𝜑 → ( lim sup ‘ ( 𝑥 ∈ 𝐴 ↦ -𝑒 -𝑒 𝐵 ) ) = ( lim sup ‘ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ↦ -𝑒 -𝑒 𝐵 ) ) ) |
18 |
4
|
xnegnegd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ) → -𝑒 -𝑒 𝐵 = 𝐵 ) |
19 |
1 18
|
mpteq2da |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ↦ -𝑒 -𝑒 𝐵 ) = ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ↦ 𝐵 ) ) |
20 |
19
|
fveq2d |
⊢ ( 𝜑 → ( lim sup ‘ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ↦ -𝑒 -𝑒 𝐵 ) ) = ( lim sup ‘ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ↦ 𝐵 ) ) ) |
21 |
17 20
|
eqtrd |
⊢ ( 𝜑 → ( lim sup ‘ ( 𝑥 ∈ 𝐴 ↦ -𝑒 -𝑒 𝐵 ) ) = ( lim sup ‘ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ↦ 𝐵 ) ) ) |
22 |
21
|
xnegeqd |
⊢ ( 𝜑 → -𝑒 ( lim sup ‘ ( 𝑥 ∈ 𝐴 ↦ -𝑒 -𝑒 𝐵 ) ) = -𝑒 ( lim sup ‘ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ↦ 𝐵 ) ) ) |
23 |
16 22
|
eqtrd |
⊢ ( 𝜑 → ( lim inf ‘ ( 𝑥 ∈ 𝐴 ↦ -𝑒 𝐵 ) ) = -𝑒 ( lim sup ‘ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ↦ 𝐵 ) ) ) |
24 |
23
|
xnegeqd |
⊢ ( 𝜑 → -𝑒 ( lim inf ‘ ( 𝑥 ∈ 𝐴 ↦ -𝑒 𝐵 ) ) = -𝑒 -𝑒 ( lim sup ‘ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝑀 [,) +∞ ) ) ↦ 𝐵 ) ) ) |
25 |
12 14 24
|
3eqtr4d |
⊢ ( 𝜑 → ( lim sup ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) = -𝑒 ( lim inf ‘ ( 𝑥 ∈ 𝐴 ↦ -𝑒 𝐵 ) ) ) |