Metamath Proof Explorer


Theorem liminfvaluz2

Description: Alternate definition of liminf for a real-valued function, defined on a set of upper integers. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses liminfvaluz2.k 𝑘 𝜑
liminfvaluz2.m ( 𝜑𝑀 ∈ ℤ )
liminfvaluz2.z 𝑍 = ( ℤ𝑀 )
liminfvaluz2.b ( ( 𝜑𝑘𝑍 ) → 𝐵 ∈ ℝ )
Assertion liminfvaluz2 ( 𝜑 → ( lim inf ‘ ( 𝑘𝑍𝐵 ) ) = -𝑒 ( lim sup ‘ ( 𝑘𝑍 ↦ - 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 liminfvaluz2.k 𝑘 𝜑
2 liminfvaluz2.m ( 𝜑𝑀 ∈ ℤ )
3 liminfvaluz2.z 𝑍 = ( ℤ𝑀 )
4 liminfvaluz2.b ( ( 𝜑𝑘𝑍 ) → 𝐵 ∈ ℝ )
5 4 rexrd ( ( 𝜑𝑘𝑍 ) → 𝐵 ∈ ℝ* )
6 1 2 3 5 liminfvaluz ( 𝜑 → ( lim inf ‘ ( 𝑘𝑍𝐵 ) ) = -𝑒 ( lim sup ‘ ( 𝑘𝑍 ↦ -𝑒 𝐵 ) ) )
7 4 rexnegd ( ( 𝜑𝑘𝑍 ) → -𝑒 𝐵 = - 𝐵 )
8 1 7 mpteq2da ( 𝜑 → ( 𝑘𝑍 ↦ -𝑒 𝐵 ) = ( 𝑘𝑍 ↦ - 𝐵 ) )
9 8 fveq2d ( 𝜑 → ( lim sup ‘ ( 𝑘𝑍 ↦ -𝑒 𝐵 ) ) = ( lim sup ‘ ( 𝑘𝑍 ↦ - 𝐵 ) ) )
10 9 xnegeqd ( 𝜑 → -𝑒 ( lim sup ‘ ( 𝑘𝑍 ↦ -𝑒 𝐵 ) ) = -𝑒 ( lim sup ‘ ( 𝑘𝑍 ↦ - 𝐵 ) ) )
11 6 10 eqtrd ( 𝜑 → ( lim inf ‘ ( 𝑘𝑍𝐵 ) ) = -𝑒 ( lim sup ‘ ( 𝑘𝑍 ↦ - 𝐵 ) ) )