Metamath Proof Explorer


Theorem liminfvaluz2

Description: Alternate definition of liminf for a real-valued function, defined on a set of upper integers. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses liminfvaluz2.k k φ
liminfvaluz2.m φ M
liminfvaluz2.z Z = M
liminfvaluz2.b φ k Z B
Assertion liminfvaluz2 φ lim inf k Z B = lim sup k Z B

Proof

Step Hyp Ref Expression
1 liminfvaluz2.k k φ
2 liminfvaluz2.m φ M
3 liminfvaluz2.z Z = M
4 liminfvaluz2.b φ k Z B
5 4 rexrd φ k Z B *
6 1 2 3 5 liminfvaluz φ lim inf k Z B = lim sup k Z B
7 4 rexnegd φ k Z B = B
8 1 7 mpteq2da φ k Z B = k Z B
9 8 fveq2d φ lim sup k Z B = lim sup k Z B
10 9 xnegeqd φ lim sup k Z B = lim sup k Z B
11 6 10 eqtrd φ lim inf k Z B = lim sup k Z B