Metamath Proof Explorer


Theorem liminfvaluz3

Description: Alternate definition of liminf for an extended real-valued function, defined on a set of upper integers. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses liminfvaluz3.1 k φ
liminfvaluz3.2 _ k F
liminfvaluz3.3 φ M
liminfvaluz3.4 Z = M
liminfvaluz3.5 φ F : Z *
Assertion liminfvaluz3 φ lim inf F = lim sup k Z F k

Proof

Step Hyp Ref Expression
1 liminfvaluz3.1 k φ
2 liminfvaluz3.2 _ k F
3 liminfvaluz3.3 φ M
4 liminfvaluz3.4 Z = M
5 liminfvaluz3.5 φ F : Z *
6 nfcv _ k Z
7 6 2 5 feqmptdf φ F = k Z F k
8 7 fveq2d φ lim inf F = lim inf k Z F k
9 5 ffvelrnda φ k Z F k *
10 1 3 4 9 liminfvaluz φ lim inf k Z F k = lim sup k Z F k
11 8 10 eqtrd φ lim inf F = lim sup k Z F k