Metamath Proof Explorer


Theorem liminfvaluz3

Description: Alternate definition of liminf for an extended real-valued function, defined on a set of upper integers. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses liminfvaluz3.1 kφ
liminfvaluz3.2 _kF
liminfvaluz3.3 φM
liminfvaluz3.4 Z=M
liminfvaluz3.5 φF:Z*
Assertion liminfvaluz3 φlim infF=lim supkZFk

Proof

Step Hyp Ref Expression
1 liminfvaluz3.1 kφ
2 liminfvaluz3.2 _kF
3 liminfvaluz3.3 φM
4 liminfvaluz3.4 Z=M
5 liminfvaluz3.5 φF:Z*
6 nfcv _kZ
7 6 2 5 feqmptdf φF=kZFk
8 7 fveq2d φlim infF=lim infkZFk
9 5 ffvelcdmda φkZFk*
10 1 3 4 9 liminfvaluz φlim infkZFk=lim supkZFk
11 8 10 eqtrd φlim infF=lim supkZFk