Metamath Proof Explorer


Theorem liminfvaluz3

Description: Alternate definition of liminf for an extended real-valued function, defined on a set of upper integers. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses liminfvaluz3.1
|- F/ k ph
liminfvaluz3.2
|- F/_ k F
liminfvaluz3.3
|- ( ph -> M e. ZZ )
liminfvaluz3.4
|- Z = ( ZZ>= ` M )
liminfvaluz3.5
|- ( ph -> F : Z --> RR* )
Assertion liminfvaluz3
|- ( ph -> ( liminf ` F ) = -e ( limsup ` ( k e. Z |-> -e ( F ` k ) ) ) )

Proof

Step Hyp Ref Expression
1 liminfvaluz3.1
 |-  F/ k ph
2 liminfvaluz3.2
 |-  F/_ k F
3 liminfvaluz3.3
 |-  ( ph -> M e. ZZ )
4 liminfvaluz3.4
 |-  Z = ( ZZ>= ` M )
5 liminfvaluz3.5
 |-  ( ph -> F : Z --> RR* )
6 nfcv
 |-  F/_ k Z
7 6 2 5 feqmptdf
 |-  ( ph -> F = ( k e. Z |-> ( F ` k ) ) )
8 7 fveq2d
 |-  ( ph -> ( liminf ` F ) = ( liminf ` ( k e. Z |-> ( F ` k ) ) ) )
9 5 ffvelrnda
 |-  ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR* )
10 1 3 4 9 liminfvaluz
 |-  ( ph -> ( liminf ` ( k e. Z |-> ( F ` k ) ) ) = -e ( limsup ` ( k e. Z |-> -e ( F ` k ) ) ) )
11 8 10 eqtrd
 |-  ( ph -> ( liminf ` F ) = -e ( limsup ` ( k e. Z |-> -e ( F ` k ) ) ) )