| Step |
Hyp |
Ref |
Expression |
| 1 |
|
liminfvaluz3.1 |
|- F/ k ph |
| 2 |
|
liminfvaluz3.2 |
|- F/_ k F |
| 3 |
|
liminfvaluz3.3 |
|- ( ph -> M e. ZZ ) |
| 4 |
|
liminfvaluz3.4 |
|- Z = ( ZZ>= ` M ) |
| 5 |
|
liminfvaluz3.5 |
|- ( ph -> F : Z --> RR* ) |
| 6 |
|
nfcv |
|- F/_ k Z |
| 7 |
6 2 5
|
feqmptdf |
|- ( ph -> F = ( k e. Z |-> ( F ` k ) ) ) |
| 8 |
7
|
fveq2d |
|- ( ph -> ( liminf ` F ) = ( liminf ` ( k e. Z |-> ( F ` k ) ) ) ) |
| 9 |
5
|
ffvelcdmda |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR* ) |
| 10 |
1 3 4 9
|
liminfvaluz |
|- ( ph -> ( liminf ` ( k e. Z |-> ( F ` k ) ) ) = -e ( limsup ` ( k e. Z |-> -e ( F ` k ) ) ) ) |
| 11 |
8 10
|
eqtrd |
|- ( ph -> ( liminf ` F ) = -e ( limsup ` ( k e. Z |-> -e ( F ` k ) ) ) ) |