Description: A counterexample for liminflelimsup , showing that the second hypothesis is needed. (Contributed by Glauco Siliprandi, 2-Jan-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | liminflelimsupcex | |- ( limsup ` (/) ) < ( liminf ` (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfltpnf | |- -oo < +oo |
|
| 2 | limsup0 | |- ( limsup ` (/) ) = -oo |
|
| 3 | liminf0 | |- ( liminf ` (/) ) = +oo |
|
| 4 | 2 3 | breq12i | |- ( ( limsup ` (/) ) < ( liminf ` (/) ) <-> -oo < +oo ) |
| 5 | 1 4 | mpbir | |- ( limsup ` (/) ) < ( liminf ` (/) ) |