Description: A counterexample for liminflelimsup , showing that the second hypothesis is needed. (Contributed by Glauco Siliprandi, 2-Jan-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | liminflelimsupcex | |- ( limsup ` (/) ) < ( liminf ` (/) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnfltpnf | |- -oo < +oo |
|
2 | limsup0 | |- ( limsup ` (/) ) = -oo |
|
3 | liminf0 | |- ( liminf ` (/) ) = +oo |
|
4 | 2 3 | breq12i | |- ( ( limsup ` (/) ) < ( liminf ` (/) ) <-> -oo < +oo ) |
5 | 1 4 | mpbir | |- ( limsup ` (/) ) < ( liminf ` (/) ) |