Metamath Proof Explorer


Theorem liminflelimsupcex

Description: A counterexample for liminflelimsup , showing that the second hypothesis is needed. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Assertion liminflelimsupcex ( lim sup ‘ ∅ ) < ( lim inf ‘ ∅ )

Proof

Step Hyp Ref Expression
1 mnfltpnf -∞ < +∞
2 limsup0 ( lim sup ‘ ∅ ) = -∞
3 liminf0 ( lim inf ‘ ∅ ) = +∞
4 2 3 breq12i ( ( lim sup ‘ ∅ ) < ( lim inf ‘ ∅ ) ↔ -∞ < +∞ )
5 1 4 mpbir ( lim sup ‘ ∅ ) < ( lim inf ‘ ∅ )