Step |
Hyp |
Ref |
Expression |
1 |
|
liminflelimsup.1 |
⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) |
2 |
|
liminflelimsup.2 |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℝ ∃ 𝑗 ∈ ( 𝑘 [,) +∞ ) ( ( 𝐹 “ ( 𝑗 [,) +∞ ) ) ∩ ℝ* ) ≠ ∅ ) |
3 |
|
oveq1 |
⊢ ( 𝑘 = 𝑖 → ( 𝑘 [,) +∞ ) = ( 𝑖 [,) +∞ ) ) |
4 |
3
|
rexeqdv |
⊢ ( 𝑘 = 𝑖 → ( ∃ 𝑗 ∈ ( 𝑘 [,) +∞ ) ( ( 𝐹 “ ( 𝑗 [,) +∞ ) ) ∩ ℝ* ) ≠ ∅ ↔ ∃ 𝑗 ∈ ( 𝑖 [,) +∞ ) ( ( 𝐹 “ ( 𝑗 [,) +∞ ) ) ∩ ℝ* ) ≠ ∅ ) ) |
5 |
|
oveq1 |
⊢ ( 𝑗 = 𝑙 → ( 𝑗 [,) +∞ ) = ( 𝑙 [,) +∞ ) ) |
6 |
5
|
imaeq2d |
⊢ ( 𝑗 = 𝑙 → ( 𝐹 “ ( 𝑗 [,) +∞ ) ) = ( 𝐹 “ ( 𝑙 [,) +∞ ) ) ) |
7 |
6
|
ineq1d |
⊢ ( 𝑗 = 𝑙 → ( ( 𝐹 “ ( 𝑗 [,) +∞ ) ) ∩ ℝ* ) = ( ( 𝐹 “ ( 𝑙 [,) +∞ ) ) ∩ ℝ* ) ) |
8 |
7
|
neeq1d |
⊢ ( 𝑗 = 𝑙 → ( ( ( 𝐹 “ ( 𝑗 [,) +∞ ) ) ∩ ℝ* ) ≠ ∅ ↔ ( ( 𝐹 “ ( 𝑙 [,) +∞ ) ) ∩ ℝ* ) ≠ ∅ ) ) |
9 |
8
|
cbvrexvw |
⊢ ( ∃ 𝑗 ∈ ( 𝑖 [,) +∞ ) ( ( 𝐹 “ ( 𝑗 [,) +∞ ) ) ∩ ℝ* ) ≠ ∅ ↔ ∃ 𝑙 ∈ ( 𝑖 [,) +∞ ) ( ( 𝐹 “ ( 𝑙 [,) +∞ ) ) ∩ ℝ* ) ≠ ∅ ) |
10 |
9
|
a1i |
⊢ ( 𝑘 = 𝑖 → ( ∃ 𝑗 ∈ ( 𝑖 [,) +∞ ) ( ( 𝐹 “ ( 𝑗 [,) +∞ ) ) ∩ ℝ* ) ≠ ∅ ↔ ∃ 𝑙 ∈ ( 𝑖 [,) +∞ ) ( ( 𝐹 “ ( 𝑙 [,) +∞ ) ) ∩ ℝ* ) ≠ ∅ ) ) |
11 |
4 10
|
bitrd |
⊢ ( 𝑘 = 𝑖 → ( ∃ 𝑗 ∈ ( 𝑘 [,) +∞ ) ( ( 𝐹 “ ( 𝑗 [,) +∞ ) ) ∩ ℝ* ) ≠ ∅ ↔ ∃ 𝑙 ∈ ( 𝑖 [,) +∞ ) ( ( 𝐹 “ ( 𝑙 [,) +∞ ) ) ∩ ℝ* ) ≠ ∅ ) ) |
12 |
11
|
cbvralvw |
⊢ ( ∀ 𝑘 ∈ ℝ ∃ 𝑗 ∈ ( 𝑘 [,) +∞ ) ( ( 𝐹 “ ( 𝑗 [,) +∞ ) ) ∩ ℝ* ) ≠ ∅ ↔ ∀ 𝑖 ∈ ℝ ∃ 𝑙 ∈ ( 𝑖 [,) +∞ ) ( ( 𝐹 “ ( 𝑙 [,) +∞ ) ) ∩ ℝ* ) ≠ ∅ ) |
13 |
2 12
|
sylib |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ℝ ∃ 𝑙 ∈ ( 𝑖 [,) +∞ ) ( ( 𝐹 “ ( 𝑙 [,) +∞ ) ) ∩ ℝ* ) ≠ ∅ ) |
14 |
1 13
|
liminflelimsuplem |
⊢ ( 𝜑 → ( lim inf ‘ 𝐹 ) ≤ ( lim sup ‘ 𝐹 ) ) |