Metamath Proof Explorer


Theorem liminflelimsup

Description: The superior limit is greater than or equal to the inferior limit. The second hypothesis is needed (see liminflelimsupcex for a counterexample). The inequality can be strict, see liminfltlimsupex . (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses liminflelimsup.1 ( 𝜑𝐹𝑉 )
liminflelimsup.2 ( 𝜑 → ∀ 𝑘 ∈ ℝ ∃ 𝑗 ∈ ( 𝑘 [,) +∞ ) ( ( 𝐹 “ ( 𝑗 [,) +∞ ) ) ∩ ℝ* ) ≠ ∅ )
Assertion liminflelimsup ( 𝜑 → ( lim inf ‘ 𝐹 ) ≤ ( lim sup ‘ 𝐹 ) )

Proof

Step Hyp Ref Expression
1 liminflelimsup.1 ( 𝜑𝐹𝑉 )
2 liminflelimsup.2 ( 𝜑 → ∀ 𝑘 ∈ ℝ ∃ 𝑗 ∈ ( 𝑘 [,) +∞ ) ( ( 𝐹 “ ( 𝑗 [,) +∞ ) ) ∩ ℝ* ) ≠ ∅ )
3 oveq1 ( 𝑘 = 𝑖 → ( 𝑘 [,) +∞ ) = ( 𝑖 [,) +∞ ) )
4 3 rexeqdv ( 𝑘 = 𝑖 → ( ∃ 𝑗 ∈ ( 𝑘 [,) +∞ ) ( ( 𝐹 “ ( 𝑗 [,) +∞ ) ) ∩ ℝ* ) ≠ ∅ ↔ ∃ 𝑗 ∈ ( 𝑖 [,) +∞ ) ( ( 𝐹 “ ( 𝑗 [,) +∞ ) ) ∩ ℝ* ) ≠ ∅ ) )
5 oveq1 ( 𝑗 = 𝑙 → ( 𝑗 [,) +∞ ) = ( 𝑙 [,) +∞ ) )
6 5 imaeq2d ( 𝑗 = 𝑙 → ( 𝐹 “ ( 𝑗 [,) +∞ ) ) = ( 𝐹 “ ( 𝑙 [,) +∞ ) ) )
7 6 ineq1d ( 𝑗 = 𝑙 → ( ( 𝐹 “ ( 𝑗 [,) +∞ ) ) ∩ ℝ* ) = ( ( 𝐹 “ ( 𝑙 [,) +∞ ) ) ∩ ℝ* ) )
8 7 neeq1d ( 𝑗 = 𝑙 → ( ( ( 𝐹 “ ( 𝑗 [,) +∞ ) ) ∩ ℝ* ) ≠ ∅ ↔ ( ( 𝐹 “ ( 𝑙 [,) +∞ ) ) ∩ ℝ* ) ≠ ∅ ) )
9 8 cbvrexvw ( ∃ 𝑗 ∈ ( 𝑖 [,) +∞ ) ( ( 𝐹 “ ( 𝑗 [,) +∞ ) ) ∩ ℝ* ) ≠ ∅ ↔ ∃ 𝑙 ∈ ( 𝑖 [,) +∞ ) ( ( 𝐹 “ ( 𝑙 [,) +∞ ) ) ∩ ℝ* ) ≠ ∅ )
10 9 a1i ( 𝑘 = 𝑖 → ( ∃ 𝑗 ∈ ( 𝑖 [,) +∞ ) ( ( 𝐹 “ ( 𝑗 [,) +∞ ) ) ∩ ℝ* ) ≠ ∅ ↔ ∃ 𝑙 ∈ ( 𝑖 [,) +∞ ) ( ( 𝐹 “ ( 𝑙 [,) +∞ ) ) ∩ ℝ* ) ≠ ∅ ) )
11 4 10 bitrd ( 𝑘 = 𝑖 → ( ∃ 𝑗 ∈ ( 𝑘 [,) +∞ ) ( ( 𝐹 “ ( 𝑗 [,) +∞ ) ) ∩ ℝ* ) ≠ ∅ ↔ ∃ 𝑙 ∈ ( 𝑖 [,) +∞ ) ( ( 𝐹 “ ( 𝑙 [,) +∞ ) ) ∩ ℝ* ) ≠ ∅ ) )
12 11 cbvralvw ( ∀ 𝑘 ∈ ℝ ∃ 𝑗 ∈ ( 𝑘 [,) +∞ ) ( ( 𝐹 “ ( 𝑗 [,) +∞ ) ) ∩ ℝ* ) ≠ ∅ ↔ ∀ 𝑖 ∈ ℝ ∃ 𝑙 ∈ ( 𝑖 [,) +∞ ) ( ( 𝐹 “ ( 𝑙 [,) +∞ ) ) ∩ ℝ* ) ≠ ∅ )
13 2 12 sylib ( 𝜑 → ∀ 𝑖 ∈ ℝ ∃ 𝑙 ∈ ( 𝑖 [,) +∞ ) ( ( 𝐹 “ ( 𝑙 [,) +∞ ) ) ∩ ℝ* ) ≠ ∅ )
14 1 13 liminflelimsuplem ( 𝜑 → ( lim inf ‘ 𝐹 ) ≤ ( lim sup ‘ 𝐹 ) )