Step |
Hyp |
Ref |
Expression |
1 |
|
limsupgtlem.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
2 |
|
limsupgtlem.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
3 |
|
limsupgtlem.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ ) |
4 |
|
limsupgtlem.r |
⊢ ( 𝜑 → ( lim sup ‘ 𝐹 ) ∈ ℝ ) |
5 |
|
limsupgtlem.x |
⊢ ( 𝜑 → 𝑋 ∈ ℝ+ ) |
6 |
|
nfv |
⊢ Ⅎ 𝑗 𝜑 |
7 |
1 2
|
uzn0d |
⊢ ( 𝜑 → 𝑍 ≠ ∅ ) |
8 |
|
rnresss |
⊢ ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) ⊆ ran 𝐹 |
9 |
8
|
a1i |
⊢ ( 𝜑 → ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) ⊆ ran 𝐹 ) |
10 |
3
|
frexr |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ* ) |
11 |
10
|
frnd |
⊢ ( 𝜑 → ran 𝐹 ⊆ ℝ* ) |
12 |
9 11
|
sstrd |
⊢ ( 𝜑 → ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) ⊆ ℝ* ) |
13 |
12
|
supxrcld |
⊢ ( 𝜑 → sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) , ℝ* , < ) ∈ ℝ* ) |
14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) , ℝ* , < ) ∈ ℝ* ) |
15 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐹 |
16 |
15 1 2 3
|
limsupreuz |
⊢ ( 𝜑 → ( ( lim sup ‘ 𝐹 ) ∈ ℝ ↔ ( ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ 𝑍 ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) ) ) |
17 |
4 16
|
mpbid |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ 𝑍 ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ≤ 𝑥 ) ) |
18 |
17
|
simpld |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ 𝑍 ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) |
19 |
|
rexr |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ* ) |
20 |
19
|
ad4antlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) → 𝑥 ∈ ℝ* ) |
21 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝐹 : 𝑍 ⟶ ℝ ) |
22 |
2
|
uztrn2 |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
23 |
22
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
24 |
21 23
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
25 |
24
|
rexrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ* ) |
26 |
25
|
3impa |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ* ) |
27 |
26
|
ad5ant134 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ* ) |
28 |
13
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) → sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) , ℝ* , < ) ∈ ℝ* ) |
29 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) → 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) |
30 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) ⊆ ℝ* ) |
31 |
|
fvres |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
32 |
31
|
eqcomd |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) → ( 𝐹 ‘ 𝑘 ) = ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
33 |
32
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) = ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
34 |
3
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝑍 ) |
35 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝐹 Fn 𝑍 ) |
36 |
23
|
ssd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ℤ≥ ‘ 𝑗 ) ⊆ 𝑍 ) |
37 |
|
fnssres |
⊢ ( ( 𝐹 Fn 𝑍 ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ 𝑍 ) → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) Fn ( ℤ≥ ‘ 𝑗 ) ) |
38 |
35 36 37
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) Fn ( ℤ≥ ‘ 𝑗 ) ) |
39 |
38
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) Fn ( ℤ≥ ‘ 𝑗 ) ) |
40 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) |
41 |
39 40
|
fnfvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) ‘ 𝑘 ) ∈ ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) ) |
42 |
33 41
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) ) |
43 |
|
eqid |
⊢ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) , ℝ* , < ) = sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) , ℝ* , < ) |
44 |
30 42 43
|
supxrubd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ≤ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) , ℝ* , < ) ) |
45 |
44
|
3impa |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ≤ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) , ℝ* , < ) ) |
46 |
45
|
ad5ant134 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) → ( 𝐹 ‘ 𝑘 ) ≤ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) , ℝ* , < ) ) |
47 |
20 27 28 29 46
|
xrletrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) → 𝑥 ≤ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) , ℝ* , < ) ) |
48 |
47
|
rexlimdva2 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ 𝑍 ) → ( ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) → 𝑥 ≤ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) , ℝ* , < ) ) ) |
49 |
48
|
ralimdva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ∀ 𝑗 ∈ 𝑍 ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) → ∀ 𝑗 ∈ 𝑍 𝑥 ≤ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) , ℝ* , < ) ) ) |
50 |
49
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ 𝑍 ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ 𝑍 𝑥 ≤ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) , ℝ* , < ) ) ) |
51 |
18 50
|
mpd |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ 𝑍 𝑥 ≤ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) , ℝ* , < ) ) |
52 |
5
|
rphalfcld |
⊢ ( 𝜑 → ( 𝑋 / 2 ) ∈ ℝ+ ) |
53 |
6 7 14 51 52
|
infrpgernmpt |
⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝑍 sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) , ℝ* , < ) ≤ ( inf ( ran ( 𝑗 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) , ℝ* , < ) ) , ℝ* , < ) +𝑒 ( 𝑋 / 2 ) ) ) |
54 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ∧ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) , ℝ* , < ) ≤ ( inf ( ran ( 𝑗 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) , ℝ* , < ) ) , ℝ* , < ) +𝑒 ( 𝑋 / 2 ) ) ) → sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) , ℝ* , < ) ≤ ( inf ( ran ( 𝑗 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) , ℝ* , < ) ) , ℝ* , < ) +𝑒 ( 𝑋 / 2 ) ) ) |
55 |
1 2 10
|
limsupvaluz |
⊢ ( 𝜑 → ( lim sup ‘ 𝐹 ) = inf ( ran ( 𝑗 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) , ℝ* , < ) ) , ℝ* , < ) ) |
56 |
55
|
eqcomd |
⊢ ( 𝜑 → inf ( ran ( 𝑗 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) , ℝ* , < ) ) , ℝ* , < ) = ( lim sup ‘ 𝐹 ) ) |
57 |
56
|
oveq1d |
⊢ ( 𝜑 → ( inf ( ran ( 𝑗 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) , ℝ* , < ) ) , ℝ* , < ) +𝑒 ( 𝑋 / 2 ) ) = ( ( lim sup ‘ 𝐹 ) +𝑒 ( 𝑋 / 2 ) ) ) |
58 |
57
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ∧ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) , ℝ* , < ) ≤ ( inf ( ran ( 𝑗 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) , ℝ* , < ) ) , ℝ* , < ) +𝑒 ( 𝑋 / 2 ) ) ) → ( inf ( ran ( 𝑗 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) , ℝ* , < ) ) , ℝ* , < ) +𝑒 ( 𝑋 / 2 ) ) = ( ( lim sup ‘ 𝐹 ) +𝑒 ( 𝑋 / 2 ) ) ) |
59 |
54 58
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ∧ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) , ℝ* , < ) ≤ ( inf ( ran ( 𝑗 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) , ℝ* , < ) ) , ℝ* , < ) +𝑒 ( 𝑋 / 2 ) ) ) → sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) , ℝ* , < ) ≤ ( ( lim sup ‘ 𝐹 ) +𝑒 ( 𝑋 / 2 ) ) ) |
60 |
25
|
3adantl3 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ∧ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) , ℝ* , < ) ≤ ( ( lim sup ‘ 𝐹 ) +𝑒 ( 𝑋 / 2 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ* ) |
61 |
|
simpl1 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ∧ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) , ℝ* , < ) ≤ ( ( lim sup ‘ 𝐹 ) +𝑒 ( 𝑋 / 2 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝜑 ) |
62 |
61 13
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ∧ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) , ℝ* , < ) ≤ ( ( lim sup ‘ 𝐹 ) +𝑒 ( 𝑋 / 2 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) , ℝ* , < ) ∈ ℝ* ) |
63 |
2
|
fvexi |
⊢ 𝑍 ∈ V |
64 |
63
|
a1i |
⊢ ( 𝜑 → 𝑍 ∈ V ) |
65 |
3 64
|
fexd |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
66 |
65
|
limsupcld |
⊢ ( 𝜑 → ( lim sup ‘ 𝐹 ) ∈ ℝ* ) |
67 |
5
|
rpred |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
68 |
67
|
rehalfcld |
⊢ ( 𝜑 → ( 𝑋 / 2 ) ∈ ℝ ) |
69 |
68
|
rexrd |
⊢ ( 𝜑 → ( 𝑋 / 2 ) ∈ ℝ* ) |
70 |
66 69
|
xaddcld |
⊢ ( 𝜑 → ( ( lim sup ‘ 𝐹 ) +𝑒 ( 𝑋 / 2 ) ) ∈ ℝ* ) |
71 |
61 70
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ∧ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) , ℝ* , < ) ≤ ( ( lim sup ‘ 𝐹 ) +𝑒 ( 𝑋 / 2 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( lim sup ‘ 𝐹 ) +𝑒 ( 𝑋 / 2 ) ) ∈ ℝ* ) |
72 |
44
|
3adantl3 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ∧ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) , ℝ* , < ) ≤ ( ( lim sup ‘ 𝐹 ) +𝑒 ( 𝑋 / 2 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ≤ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) , ℝ* , < ) ) |
73 |
|
simpl3 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ∧ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) , ℝ* , < ) ≤ ( ( lim sup ‘ 𝐹 ) +𝑒 ( 𝑋 / 2 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) , ℝ* , < ) ≤ ( ( lim sup ‘ 𝐹 ) +𝑒 ( 𝑋 / 2 ) ) ) |
74 |
60 62 71 72 73
|
xrletrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ∧ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) , ℝ* , < ) ≤ ( ( lim sup ‘ 𝐹 ) +𝑒 ( 𝑋 / 2 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ≤ ( ( lim sup ‘ 𝐹 ) +𝑒 ( 𝑋 / 2 ) ) ) |
75 |
4 68
|
rexaddd |
⊢ ( 𝜑 → ( ( lim sup ‘ 𝐹 ) +𝑒 ( 𝑋 / 2 ) ) = ( ( lim sup ‘ 𝐹 ) + ( 𝑋 / 2 ) ) ) |
76 |
61 75
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ∧ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) , ℝ* , < ) ≤ ( ( lim sup ‘ 𝐹 ) +𝑒 ( 𝑋 / 2 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( lim sup ‘ 𝐹 ) +𝑒 ( 𝑋 / 2 ) ) = ( ( lim sup ‘ 𝐹 ) + ( 𝑋 / 2 ) ) ) |
77 |
74 76
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ∧ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) , ℝ* , < ) ≤ ( ( lim sup ‘ 𝐹 ) +𝑒 ( 𝑋 / 2 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ≤ ( ( lim sup ‘ 𝐹 ) + ( 𝑋 / 2 ) ) ) |
78 |
68
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝑋 / 2 ) ∈ ℝ ) |
79 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( lim sup ‘ 𝐹 ) ∈ ℝ ) |
80 |
24 78 79
|
lesubaddd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝑋 / 2 ) ) ≤ ( lim sup ‘ 𝐹 ) ↔ ( 𝐹 ‘ 𝑘 ) ≤ ( ( lim sup ‘ 𝐹 ) + ( 𝑋 / 2 ) ) ) ) |
81 |
80
|
3adantl3 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ∧ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) , ℝ* , < ) ≤ ( ( lim sup ‘ 𝐹 ) +𝑒 ( 𝑋 / 2 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝑋 / 2 ) ) ≤ ( lim sup ‘ 𝐹 ) ↔ ( 𝐹 ‘ 𝑘 ) ≤ ( ( lim sup ‘ 𝐹 ) + ( 𝑋 / 2 ) ) ) ) |
82 |
77 81
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ∧ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) , ℝ* , < ) ≤ ( ( lim sup ‘ 𝐹 ) +𝑒 ( 𝑋 / 2 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝐹 ‘ 𝑘 ) − ( 𝑋 / 2 ) ) ≤ ( lim sup ‘ 𝐹 ) ) |
83 |
82
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ∧ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) , ℝ* , < ) ≤ ( ( lim sup ‘ 𝐹 ) +𝑒 ( 𝑋 / 2 ) ) ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) − ( 𝑋 / 2 ) ) ≤ ( lim sup ‘ 𝐹 ) ) |
84 |
59 83
|
syld3an3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ∧ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) , ℝ* , < ) ≤ ( inf ( ran ( 𝑗 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) , ℝ* , < ) ) , ℝ* , < ) +𝑒 ( 𝑋 / 2 ) ) ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) − ( 𝑋 / 2 ) ) ≤ ( lim sup ‘ 𝐹 ) ) |
85 |
84
|
3exp |
⊢ ( 𝜑 → ( 𝑗 ∈ 𝑍 → ( sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) , ℝ* , < ) ≤ ( inf ( ran ( 𝑗 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) , ℝ* , < ) ) , ℝ* , < ) +𝑒 ( 𝑋 / 2 ) ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) − ( 𝑋 / 2 ) ) ≤ ( lim sup ‘ 𝐹 ) ) ) ) |
86 |
6 85
|
reximdai |
⊢ ( 𝜑 → ( ∃ 𝑗 ∈ 𝑍 sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) , ℝ* , < ) ≤ ( inf ( ran ( 𝑗 ∈ 𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ≥ ‘ 𝑗 ) ) , ℝ* , < ) ) , ℝ* , < ) +𝑒 ( 𝑋 / 2 ) ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) − ( 𝑋 / 2 ) ) ≤ ( lim sup ‘ 𝐹 ) ) ) |
87 |
53 86
|
mpd |
⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) − ( 𝑋 / 2 ) ) ≤ ( lim sup ‘ 𝐹 ) ) |
88 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝜑 ) |
89 |
3
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
90 |
67
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑋 ∈ ℝ ) |
91 |
89 90
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑘 ) − 𝑋 ) ∈ ℝ ) |
92 |
91
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ ( ( 𝐹 ‘ 𝑘 ) − ( 𝑋 / 2 ) ) ≤ ( lim sup ‘ 𝐹 ) ) → ( ( 𝐹 ‘ 𝑘 ) − 𝑋 ) ∈ ℝ ) |
93 |
68
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑋 / 2 ) ∈ ℝ ) |
94 |
89 93
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑘 ) − ( 𝑋 / 2 ) ) ∈ ℝ ) |
95 |
94
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ ( ( 𝐹 ‘ 𝑘 ) − ( 𝑋 / 2 ) ) ≤ ( lim sup ‘ 𝐹 ) ) → ( ( 𝐹 ‘ 𝑘 ) − ( 𝑋 / 2 ) ) ∈ ℝ ) |
96 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ ( ( 𝐹 ‘ 𝑘 ) − ( 𝑋 / 2 ) ) ≤ ( lim sup ‘ 𝐹 ) ) → ( lim sup ‘ 𝐹 ) ∈ ℝ ) |
97 |
5
|
rphalfltd |
⊢ ( 𝜑 → ( 𝑋 / 2 ) < 𝑋 ) |
98 |
97
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑋 / 2 ) < 𝑋 ) |
99 |
93 90 89 98
|
ltsub2dd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑘 ) − 𝑋 ) < ( ( 𝐹 ‘ 𝑘 ) − ( 𝑋 / 2 ) ) ) |
100 |
99
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ ( ( 𝐹 ‘ 𝑘 ) − ( 𝑋 / 2 ) ) ≤ ( lim sup ‘ 𝐹 ) ) → ( ( 𝐹 ‘ 𝑘 ) − 𝑋 ) < ( ( 𝐹 ‘ 𝑘 ) − ( 𝑋 / 2 ) ) ) |
101 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ ( ( 𝐹 ‘ 𝑘 ) − ( 𝑋 / 2 ) ) ≤ ( lim sup ‘ 𝐹 ) ) → ( ( 𝐹 ‘ 𝑘 ) − ( 𝑋 / 2 ) ) ≤ ( lim sup ‘ 𝐹 ) ) |
102 |
92 95 96 100 101
|
ltletrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ ( ( 𝐹 ‘ 𝑘 ) − ( 𝑋 / 2 ) ) ≤ ( lim sup ‘ 𝐹 ) ) → ( ( 𝐹 ‘ 𝑘 ) − 𝑋 ) < ( lim sup ‘ 𝐹 ) ) |
103 |
102
|
ex |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝑋 / 2 ) ) ≤ ( lim sup ‘ 𝐹 ) → ( ( 𝐹 ‘ 𝑘 ) − 𝑋 ) < ( lim sup ‘ 𝐹 ) ) ) |
104 |
88 23 103
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( 𝐹 ‘ 𝑘 ) − ( 𝑋 / 2 ) ) ≤ ( lim sup ‘ 𝐹 ) → ( ( 𝐹 ‘ 𝑘 ) − 𝑋 ) < ( lim sup ‘ 𝐹 ) ) ) |
105 |
104
|
ralimdva |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) − ( 𝑋 / 2 ) ) ≤ ( lim sup ‘ 𝐹 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) − 𝑋 ) < ( lim sup ‘ 𝐹 ) ) ) |
106 |
105
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) − ( 𝑋 / 2 ) ) ≤ ( lim sup ‘ 𝐹 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) − 𝑋 ) < ( lim sup ‘ 𝐹 ) ) ) |
107 |
87 106
|
mpd |
⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) − 𝑋 ) < ( lim sup ‘ 𝐹 ) ) |