| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limsupreuz.1 |
⊢ Ⅎ 𝑗 𝐹 |
| 2 |
|
limsupreuz.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 3 |
|
limsupreuz.3 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 4 |
|
limsupreuz.4 |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ ) |
| 5 |
|
nfcv |
⊢ Ⅎ 𝑙 𝐹 |
| 6 |
4
|
frexr |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ* ) |
| 7 |
5 2 3 6
|
limsupre3uzlem |
⊢ ( 𝜑 → ( ( lim sup ‘ 𝐹 ) ∈ ℝ ↔ ( ∃ 𝑦 ∈ ℝ ∀ 𝑖 ∈ 𝑍 ∃ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑦 ≤ ( 𝐹 ‘ 𝑙 ) ∧ ∃ 𝑦 ∈ ℝ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑙 ) ≤ 𝑦 ) ) ) |
| 8 |
|
breq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 ≤ ( 𝐹 ‘ 𝑙 ) ↔ 𝑥 ≤ ( 𝐹 ‘ 𝑙 ) ) ) |
| 9 |
8
|
rexbidv |
⊢ ( 𝑦 = 𝑥 → ( ∃ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑦 ≤ ( 𝐹 ‘ 𝑙 ) ↔ ∃ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑥 ≤ ( 𝐹 ‘ 𝑙 ) ) ) |
| 10 |
9
|
ralbidv |
⊢ ( 𝑦 = 𝑥 → ( ∀ 𝑖 ∈ 𝑍 ∃ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑦 ≤ ( 𝐹 ‘ 𝑙 ) ↔ ∀ 𝑖 ∈ 𝑍 ∃ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑥 ≤ ( 𝐹 ‘ 𝑙 ) ) ) |
| 11 |
|
fveq2 |
⊢ ( 𝑖 = 𝑘 → ( ℤ≥ ‘ 𝑖 ) = ( ℤ≥ ‘ 𝑘 ) ) |
| 12 |
11
|
rexeqdv |
⊢ ( 𝑖 = 𝑘 → ( ∃ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑥 ≤ ( 𝐹 ‘ 𝑙 ) ↔ ∃ 𝑙 ∈ ( ℤ≥ ‘ 𝑘 ) 𝑥 ≤ ( 𝐹 ‘ 𝑙 ) ) ) |
| 13 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑥 |
| 14 |
|
nfcv |
⊢ Ⅎ 𝑗 ≤ |
| 15 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑙 |
| 16 |
1 15
|
nffv |
⊢ Ⅎ 𝑗 ( 𝐹 ‘ 𝑙 ) |
| 17 |
13 14 16
|
nfbr |
⊢ Ⅎ 𝑗 𝑥 ≤ ( 𝐹 ‘ 𝑙 ) |
| 18 |
|
nfv |
⊢ Ⅎ 𝑙 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) |
| 19 |
|
fveq2 |
⊢ ( 𝑙 = 𝑗 → ( 𝐹 ‘ 𝑙 ) = ( 𝐹 ‘ 𝑗 ) ) |
| 20 |
19
|
breq2d |
⊢ ( 𝑙 = 𝑗 → ( 𝑥 ≤ ( 𝐹 ‘ 𝑙 ) ↔ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) |
| 21 |
17 18 20
|
cbvrexw |
⊢ ( ∃ 𝑙 ∈ ( ℤ≥ ‘ 𝑘 ) 𝑥 ≤ ( 𝐹 ‘ 𝑙 ) ↔ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) |
| 22 |
21
|
a1i |
⊢ ( 𝑖 = 𝑘 → ( ∃ 𝑙 ∈ ( ℤ≥ ‘ 𝑘 ) 𝑥 ≤ ( 𝐹 ‘ 𝑙 ) ↔ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) |
| 23 |
12 22
|
bitrd |
⊢ ( 𝑖 = 𝑘 → ( ∃ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑥 ≤ ( 𝐹 ‘ 𝑙 ) ↔ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) |
| 24 |
23
|
cbvralvw |
⊢ ( ∀ 𝑖 ∈ 𝑍 ∃ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑥 ≤ ( 𝐹 ‘ 𝑙 ) ↔ ∀ 𝑘 ∈ 𝑍 ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) |
| 25 |
24
|
a1i |
⊢ ( 𝑦 = 𝑥 → ( ∀ 𝑖 ∈ 𝑍 ∃ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑥 ≤ ( 𝐹 ‘ 𝑙 ) ↔ ∀ 𝑘 ∈ 𝑍 ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) |
| 26 |
10 25
|
bitrd |
⊢ ( 𝑦 = 𝑥 → ( ∀ 𝑖 ∈ 𝑍 ∃ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑦 ≤ ( 𝐹 ‘ 𝑙 ) ↔ ∀ 𝑘 ∈ 𝑍 ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) |
| 27 |
26
|
cbvrexvw |
⊢ ( ∃ 𝑦 ∈ ℝ ∀ 𝑖 ∈ 𝑍 ∃ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑦 ≤ ( 𝐹 ‘ 𝑙 ) ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) |
| 28 |
|
breq2 |
⊢ ( 𝑦 = 𝑥 → ( ( 𝐹 ‘ 𝑙 ) ≤ 𝑦 ↔ ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 ) ) |
| 29 |
28
|
ralbidv |
⊢ ( 𝑦 = 𝑥 → ( ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑙 ) ≤ 𝑦 ↔ ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 ) ) |
| 30 |
29
|
rexbidv |
⊢ ( 𝑦 = 𝑥 → ( ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑙 ) ≤ 𝑦 ↔ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 ) ) |
| 31 |
11
|
raleqdv |
⊢ ( 𝑖 = 𝑘 → ( ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 ↔ ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 ) ) |
| 32 |
16 14 13
|
nfbr |
⊢ Ⅎ 𝑗 ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 |
| 33 |
|
nfv |
⊢ Ⅎ 𝑙 ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 |
| 34 |
19
|
breq1d |
⊢ ( 𝑙 = 𝑗 → ( ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 ↔ ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
| 35 |
32 33 34
|
cbvralw |
⊢ ( ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 ↔ ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) |
| 36 |
35
|
a1i |
⊢ ( 𝑖 = 𝑘 → ( ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 ↔ ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
| 37 |
31 36
|
bitrd |
⊢ ( 𝑖 = 𝑘 → ( ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 ↔ ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
| 38 |
37
|
cbvrexvw |
⊢ ( ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 ↔ ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) |
| 39 |
38
|
a1i |
⊢ ( 𝑦 = 𝑥 → ( ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 ↔ ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
| 40 |
30 39
|
bitrd |
⊢ ( 𝑦 = 𝑥 → ( ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑙 ) ≤ 𝑦 ↔ ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
| 41 |
40
|
cbvrexvw |
⊢ ( ∃ 𝑦 ∈ ℝ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑙 ) ≤ 𝑦 ↔ ∃ 𝑥 ∈ ℝ ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) |
| 42 |
27 41
|
anbi12i |
⊢ ( ( ∃ 𝑦 ∈ ℝ ∀ 𝑖 ∈ 𝑍 ∃ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑦 ≤ ( 𝐹 ‘ 𝑙 ) ∧ ∃ 𝑦 ∈ ℝ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑙 ) ≤ 𝑦 ) ↔ ( ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ∧ ∃ 𝑥 ∈ ℝ ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
| 43 |
42
|
a1i |
⊢ ( 𝜑 → ( ( ∃ 𝑦 ∈ ℝ ∀ 𝑖 ∈ 𝑍 ∃ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) 𝑦 ≤ ( 𝐹 ‘ 𝑙 ) ∧ ∃ 𝑦 ∈ ℝ ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( 𝐹 ‘ 𝑙 ) ≤ 𝑦 ) ↔ ( ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ∧ ∃ 𝑥 ∈ ℝ ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) ) |
| 44 |
7 43
|
bitrd |
⊢ ( 𝜑 → ( ( lim sup ‘ 𝐹 ) ∈ ℝ ↔ ( ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ∧ ∃ 𝑥 ∈ ℝ ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) ) |
| 45 |
|
nfv |
⊢ Ⅎ 𝑖 ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 |
| 46 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑖 |
| 47 |
1 46
|
nffv |
⊢ Ⅎ 𝑗 ( 𝐹 ‘ 𝑖 ) |
| 48 |
47 14 13
|
nfbr |
⊢ Ⅎ 𝑗 ( 𝐹 ‘ 𝑖 ) ≤ 𝑥 |
| 49 |
|
fveq2 |
⊢ ( 𝑗 = 𝑖 → ( 𝐹 ‘ 𝑗 ) = ( 𝐹 ‘ 𝑖 ) ) |
| 50 |
49
|
breq1d |
⊢ ( 𝑗 = 𝑖 → ( ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ↔ ( 𝐹 ‘ 𝑖 ) ≤ 𝑥 ) ) |
| 51 |
45 48 50
|
cbvralw |
⊢ ( ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ↔ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑖 ) ≤ 𝑥 ) |
| 52 |
51
|
rexbii |
⊢ ( ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ↔ ∃ 𝑘 ∈ 𝑍 ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑖 ) ≤ 𝑥 ) |
| 53 |
52
|
rexbii |
⊢ ( ∃ 𝑥 ∈ ℝ ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ↔ ∃ 𝑥 ∈ ℝ ∃ 𝑘 ∈ 𝑍 ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑖 ) ≤ 𝑥 ) |
| 54 |
53
|
a1i |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ℝ ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ↔ ∃ 𝑥 ∈ ℝ ∃ 𝑘 ∈ 𝑍 ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑖 ) ≤ 𝑥 ) ) |
| 55 |
|
nfv |
⊢ Ⅎ 𝑖 𝜑 |
| 56 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → 𝐹 : 𝑍 ⟶ ℝ ) |
| 57 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → 𝑖 ∈ 𝑍 ) |
| 58 |
56 57
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑖 ) ∈ ℝ ) |
| 59 |
55 2 3 58
|
uzub |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ℝ ∃ 𝑘 ∈ 𝑍 ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑖 ) ≤ 𝑥 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑖 ∈ 𝑍 ( 𝐹 ‘ 𝑖 ) ≤ 𝑥 ) ) |
| 60 |
|
eqcom |
⊢ ( 𝑗 = 𝑖 ↔ 𝑖 = 𝑗 ) |
| 61 |
60
|
imbi1i |
⊢ ( ( 𝑗 = 𝑖 → ( ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ↔ ( 𝐹 ‘ 𝑖 ) ≤ 𝑥 ) ) ↔ ( 𝑖 = 𝑗 → ( ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ↔ ( 𝐹 ‘ 𝑖 ) ≤ 𝑥 ) ) ) |
| 62 |
|
bicom |
⊢ ( ( ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ↔ ( 𝐹 ‘ 𝑖 ) ≤ 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑖 ) ≤ 𝑥 ↔ ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
| 63 |
62
|
imbi2i |
⊢ ( ( 𝑖 = 𝑗 → ( ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ↔ ( 𝐹 ‘ 𝑖 ) ≤ 𝑥 ) ) ↔ ( 𝑖 = 𝑗 → ( ( 𝐹 ‘ 𝑖 ) ≤ 𝑥 ↔ ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) ) |
| 64 |
61 63
|
bitri |
⊢ ( ( 𝑗 = 𝑖 → ( ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ↔ ( 𝐹 ‘ 𝑖 ) ≤ 𝑥 ) ) ↔ ( 𝑖 = 𝑗 → ( ( 𝐹 ‘ 𝑖 ) ≤ 𝑥 ↔ ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) ) |
| 65 |
50 64
|
mpbi |
⊢ ( 𝑖 = 𝑗 → ( ( 𝐹 ‘ 𝑖 ) ≤ 𝑥 ↔ ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
| 66 |
48 45 65
|
cbvralw |
⊢ ( ∀ 𝑖 ∈ 𝑍 ( 𝐹 ‘ 𝑖 ) ≤ 𝑥 ↔ ∀ 𝑗 ∈ 𝑍 ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) |
| 67 |
66
|
rexbii |
⊢ ( ∃ 𝑥 ∈ ℝ ∀ 𝑖 ∈ 𝑍 ( 𝐹 ‘ 𝑖 ) ≤ 𝑥 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ 𝑍 ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) |
| 68 |
67
|
a1i |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ℝ ∀ 𝑖 ∈ 𝑍 ( 𝐹 ‘ 𝑖 ) ≤ 𝑥 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ 𝑍 ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
| 69 |
54 59 68
|
3bitrd |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ℝ ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ 𝑍 ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
| 70 |
69
|
anbi2d |
⊢ ( 𝜑 → ( ( ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ∧ ∃ 𝑥 ∈ ℝ ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ↔ ( ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ 𝑍 ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) ) |
| 71 |
44 70
|
bitrd |
⊢ ( 𝜑 → ( ( lim sup ‘ 𝐹 ) ∈ ℝ ↔ ( ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ 𝑍 ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ 𝑍 ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) ) |