Metamath Proof Explorer


Theorem limsupreuz

Description: Given a function on the reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is less than or equal to the function, infinitely often; 2. there is a real number that is greater than or equal to the function. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupreuz.1 _ j F
limsupreuz.2 φ M
limsupreuz.3 Z = M
limsupreuz.4 φ F : Z
Assertion limsupreuz φ lim sup F x k Z j k x F j x j Z F j x

Proof

Step Hyp Ref Expression
1 limsupreuz.1 _ j F
2 limsupreuz.2 φ M
3 limsupreuz.3 Z = M
4 limsupreuz.4 φ F : Z
5 nfcv _ l F
6 4 frexr φ F : Z *
7 5 2 3 6 limsupre3uzlem φ lim sup F y i Z l i y F l y i Z l i F l y
8 breq1 y = x y F l x F l
9 8 rexbidv y = x l i y F l l i x F l
10 9 ralbidv y = x i Z l i y F l i Z l i x F l
11 fveq2 i = k i = k
12 11 rexeqdv i = k l i x F l l k x F l
13 nfcv _ j x
14 nfcv _ j
15 nfcv _ j l
16 1 15 nffv _ j F l
17 13 14 16 nfbr j x F l
18 nfv l x F j
19 fveq2 l = j F l = F j
20 19 breq2d l = j x F l x F j
21 17 18 20 cbvrexw l k x F l j k x F j
22 21 a1i i = k l k x F l j k x F j
23 12 22 bitrd i = k l i x F l j k x F j
24 23 cbvralvw i Z l i x F l k Z j k x F j
25 24 a1i y = x i Z l i x F l k Z j k x F j
26 10 25 bitrd y = x i Z l i y F l k Z j k x F j
27 26 cbvrexvw y i Z l i y F l x k Z j k x F j
28 breq2 y = x F l y F l x
29 28 ralbidv y = x l i F l y l i F l x
30 29 rexbidv y = x i Z l i F l y i Z l i F l x
31 11 raleqdv i = k l i F l x l k F l x
32 16 14 13 nfbr j F l x
33 nfv l F j x
34 19 breq1d l = j F l x F j x
35 32 33 34 cbvralw l k F l x j k F j x
36 35 a1i i = k l k F l x j k F j x
37 31 36 bitrd i = k l i F l x j k F j x
38 37 cbvrexvw i Z l i F l x k Z j k F j x
39 38 a1i y = x i Z l i F l x k Z j k F j x
40 30 39 bitrd y = x i Z l i F l y k Z j k F j x
41 40 cbvrexvw y i Z l i F l y x k Z j k F j x
42 27 41 anbi12i y i Z l i y F l y i Z l i F l y x k Z j k x F j x k Z j k F j x
43 42 a1i φ y i Z l i y F l y i Z l i F l y x k Z j k x F j x k Z j k F j x
44 7 43 bitrd φ lim sup F x k Z j k x F j x k Z j k F j x
45 nfv i F j x
46 nfcv _ j i
47 1 46 nffv _ j F i
48 47 14 13 nfbr j F i x
49 fveq2 j = i F j = F i
50 49 breq1d j = i F j x F i x
51 45 48 50 cbvralw j k F j x i k F i x
52 51 rexbii k Z j k F j x k Z i k F i x
53 52 rexbii x k Z j k F j x x k Z i k F i x
54 53 a1i φ x k Z j k F j x x k Z i k F i x
55 nfv i φ
56 4 adantr φ i Z F : Z
57 simpr φ i Z i Z
58 56 57 ffvelrnd φ i Z F i
59 55 2 3 58 uzub φ x k Z i k F i x x i Z F i x
60 eqcom j = i i = j
61 60 imbi1i j = i F j x F i x i = j F j x F i x
62 bicom F j x F i x F i x F j x
63 62 imbi2i i = j F j x F i x i = j F i x F j x
64 61 63 bitri j = i F j x F i x i = j F i x F j x
65 50 64 mpbi i = j F i x F j x
66 48 45 65 cbvralw i Z F i x j Z F j x
67 66 rexbii x i Z F i x x j Z F j x
68 67 a1i φ x i Z F i x x j Z F j x
69 54 59 68 3bitrd φ x k Z j k F j x x j Z F j x
70 69 anbi2d φ x k Z j k x F j x k Z j k F j x x k Z j k x F j x j Z F j x
71 44 70 bitrd φ lim sup F x k Z j k x F j x j Z F j x