Step |
Hyp |
Ref |
Expression |
1 |
|
uzub.1 |
|
2 |
|
uzub.2 |
|
3 |
|
uzub.3 |
|
4 |
|
uzub.12 |
|
5 |
|
fveq2 |
|
6 |
5
|
raleqdv |
|
7 |
6
|
cbvrexvw |
|
8 |
7
|
a1i |
|
9 |
|
breq2 |
|
10 |
9
|
ralbidv |
|
11 |
10
|
rexbidv |
|
12 |
8 11
|
bitrd |
|
13 |
12
|
cbvrexvw |
|
14 |
13
|
a1i |
|
15 |
|
breq2 |
|
16 |
15
|
ralbidv |
|
17 |
16
|
rexbidv |
|
18 |
17
|
cbvrexvw |
|
19 |
18
|
biimpi |
|
20 |
|
nfv |
|
21 |
1 20
|
nfan |
|
22 |
|
nfv |
|
23 |
21 22
|
nfan |
|
24 |
|
nfra1 |
|
25 |
23 24
|
nfan |
|
26 |
|
nfmpt1 |
|
27 |
26
|
nfrn |
|
28 |
|
nfcv |
|
29 |
|
nfcv |
|
30 |
27 28 29
|
nfsup |
|
31 |
|
nfcv |
|
32 |
|
nfcv |
|
33 |
30 31 32
|
nfbr |
|
34 |
33 32 30
|
nfif |
|
35 |
2
|
ad3antrrr |
|
36 |
|
simpllr |
|
37 |
|
eqid |
|
38 |
|
eqid |
|
39 |
|
simplr |
|
40 |
4
|
ad5ant15 |
|
41 |
|
simpr |
|
42 |
25 34 35 3 36 37 38 39 40 41
|
uzublem |
|
43 |
42
|
rexlimdva2 |
|
44 |
43
|
imp |
|
45 |
44
|
rexlimdva2 |
|
46 |
45
|
imp |
|
47 |
19 46
|
sylan2 |
|
48 |
47
|
ex |
|
49 |
2 3
|
uzidd2 |
|
50 |
49
|
ad2antrr |
|
51 |
3
|
raleqi |
|
52 |
51
|
biimpi |
|
53 |
52
|
adantl |
|
54 |
|
nfv |
|
55 |
|
fveq2 |
|
56 |
55
|
raleqdv |
|
57 |
54 56
|
rspce |
|
58 |
50 53 57
|
syl2anc |
|
59 |
58
|
ex |
|
60 |
59
|
reximdva |
|
61 |
48 60
|
impbid |
|
62 |
|
breq2 |
|
63 |
62
|
ralbidv |
|
64 |
63
|
cbvrexvw |
|
65 |
64
|
a1i |
|
66 |
14 61 65
|
3bitrd |
|