| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uzub.1 |
|
| 2 |
|
uzub.2 |
|
| 3 |
|
uzub.3 |
|
| 4 |
|
uzub.12 |
|
| 5 |
|
fveq2 |
|
| 6 |
5
|
raleqdv |
|
| 7 |
6
|
cbvrexvw |
|
| 8 |
7
|
a1i |
|
| 9 |
|
breq2 |
|
| 10 |
9
|
ralbidv |
|
| 11 |
10
|
rexbidv |
|
| 12 |
8 11
|
bitrd |
|
| 13 |
12
|
cbvrexvw |
|
| 14 |
13
|
a1i |
|
| 15 |
|
breq2 |
|
| 16 |
15
|
ralbidv |
|
| 17 |
16
|
rexbidv |
|
| 18 |
17
|
cbvrexvw |
|
| 19 |
18
|
biimpi |
|
| 20 |
|
nfv |
|
| 21 |
1 20
|
nfan |
|
| 22 |
|
nfv |
|
| 23 |
21 22
|
nfan |
|
| 24 |
|
nfra1 |
|
| 25 |
23 24
|
nfan |
|
| 26 |
|
nfmpt1 |
|
| 27 |
26
|
nfrn |
|
| 28 |
|
nfcv |
|
| 29 |
|
nfcv |
|
| 30 |
27 28 29
|
nfsup |
|
| 31 |
|
nfcv |
|
| 32 |
|
nfcv |
|
| 33 |
30 31 32
|
nfbr |
|
| 34 |
33 32 30
|
nfif |
|
| 35 |
2
|
ad3antrrr |
|
| 36 |
|
simpllr |
|
| 37 |
|
eqid |
|
| 38 |
|
eqid |
|
| 39 |
|
simplr |
|
| 40 |
4
|
ad5ant15 |
|
| 41 |
|
simpr |
|
| 42 |
25 34 35 3 36 37 38 39 40 41
|
uzublem |
|
| 43 |
42
|
rexlimdva2 |
|
| 44 |
43
|
imp |
|
| 45 |
44
|
rexlimdva2 |
|
| 46 |
45
|
imp |
|
| 47 |
19 46
|
sylan2 |
|
| 48 |
47
|
ex |
|
| 49 |
2 3
|
uzidd2 |
|
| 50 |
49
|
ad2antrr |
|
| 51 |
3
|
raleqi |
|
| 52 |
51
|
biimpi |
|
| 53 |
52
|
adantl |
|
| 54 |
|
nfv |
|
| 55 |
|
fveq2 |
|
| 56 |
55
|
raleqdv |
|
| 57 |
54 56
|
rspce |
|
| 58 |
50 53 57
|
syl2anc |
|
| 59 |
58
|
ex |
|
| 60 |
59
|
reximdva |
|
| 61 |
48 60
|
impbid |
|
| 62 |
|
breq2 |
|
| 63 |
62
|
ralbidv |
|
| 64 |
63
|
cbvrexvw |
|
| 65 |
64
|
a1i |
|
| 66 |
14 61 65
|
3bitrd |
|