| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limsupre3uzlem.1 |
|
| 2 |
|
limsupre3uzlem.2 |
|
| 3 |
|
limsupre3uzlem.3 |
|
| 4 |
|
limsupre3uzlem.4 |
|
| 5 |
|
uzssre |
|
| 6 |
3 5
|
eqsstri |
|
| 7 |
6
|
a1i |
|
| 8 |
1 7 4
|
limsupre3 |
|
| 9 |
|
breq1 |
|
| 10 |
9
|
anbi1d |
|
| 11 |
10
|
rexbidv |
|
| 12 |
11
|
cbvralvw |
|
| 13 |
12
|
biimpi |
|
| 14 |
|
nfra1 |
|
| 15 |
|
simpr |
|
| 16 |
6 15
|
sselid |
|
| 17 |
|
rspa |
|
| 18 |
16 17
|
syldan |
|
| 19 |
|
nfv |
|
| 20 |
|
nfre1 |
|
| 21 |
|
eqid |
|
| 22 |
3
|
eluzelz2 |
|
| 23 |
22
|
3ad2ant1 |
|
| 24 |
3
|
eluzelz2 |
|
| 25 |
24
|
3ad2ant2 |
|
| 26 |
|
simp3 |
|
| 27 |
21 23 25 26
|
eluzd |
|
| 28 |
27
|
3adant3r |
|
| 29 |
|
simp3r |
|
| 30 |
|
rspe |
|
| 31 |
28 29 30
|
syl2anc |
|
| 32 |
31
|
3exp |
|
| 33 |
19 20 32
|
rexlimd |
|
| 34 |
33
|
imp |
|
| 35 |
15 18 34
|
syl2anc |
|
| 36 |
14 35
|
ralrimia |
|
| 37 |
13 36
|
syl |
|
| 38 |
37
|
a1i |
|
| 39 |
|
iftrue |
|
| 40 |
39
|
adantl |
|
| 41 |
2
|
ad2antrr |
|
| 42 |
|
ceilcl |
|
| 43 |
42
|
ad2antlr |
|
| 44 |
|
simpr |
|
| 45 |
3 41 43 44
|
eluzd |
|
| 46 |
40 45
|
eqeltrd |
|
| 47 |
|
iffalse |
|
| 48 |
47
|
adantl |
|
| 49 |
2 3
|
uzidd2 |
|
| 50 |
49
|
adantr |
|
| 51 |
48 50
|
eqeltrd |
|
| 52 |
51
|
adantlr |
|
| 53 |
46 52
|
pm2.61dan |
|
| 54 |
53
|
adantlr |
|
| 55 |
|
simplr |
|
| 56 |
|
fveq2 |
|
| 57 |
56
|
rexeqdv |
|
| 58 |
57
|
rspcva |
|
| 59 |
54 55 58
|
syl2anc |
|
| 60 |
|
nfv |
|
| 61 |
19
|
nfci |
|
| 62 |
61 20
|
nfralw |
|
| 63 |
60 62
|
nfan |
|
| 64 |
|
nfv |
|
| 65 |
63 64
|
nfan |
|
| 66 |
|
nfre1 |
|
| 67 |
2
|
ad2antrr |
|
| 68 |
|
eluzelz |
|
| 69 |
68
|
adantl |
|
| 70 |
67
|
zred |
|
| 71 |
6 53
|
sselid |
|
| 72 |
71
|
adantr |
|
| 73 |
69
|
zred |
|
| 74 |
6 49
|
sselid |
|
| 75 |
74
|
adantr |
|
| 76 |
42
|
zred |
|
| 77 |
76
|
adantl |
|
| 78 |
|
max1 |
|
| 79 |
75 77 78
|
syl2anc |
|
| 80 |
79
|
adantr |
|
| 81 |
|
eluzle |
|
| 82 |
81
|
adantl |
|
| 83 |
70 72 73 80 82
|
letrd |
|
| 84 |
3 67 69 83
|
eluzd |
|
| 85 |
84
|
3adant3 |
|
| 86 |
|
simplr |
|
| 87 |
|
simpr |
|
| 88 |
|
ceilge |
|
| 89 |
88
|
adantl |
|
| 90 |
|
max2 |
|
| 91 |
75 77 90
|
syl2anc |
|
| 92 |
87 77 71 89 91
|
letrd |
|
| 93 |
92
|
adantr |
|
| 94 |
86 72 73 93 82
|
letrd |
|
| 95 |
94
|
3adant3 |
|
| 96 |
|
simp3 |
|
| 97 |
95 96
|
jca |
|
| 98 |
|
rspe |
|
| 99 |
85 97 98
|
syl2anc |
|
| 100 |
99
|
3exp |
|
| 101 |
100
|
adantlr |
|
| 102 |
65 66 101
|
rexlimd |
|
| 103 |
59 102
|
mpd |
|
| 104 |
103
|
ralrimiva |
|
| 105 |
104
|
ex |
|
| 106 |
38 105
|
impbid |
|
| 107 |
106
|
rexbidv |
|
| 108 |
53
|
adantr |
|
| 109 |
60 64
|
nfan |
|
| 110 |
|
nfra1 |
|
| 111 |
109 110
|
nfan |
|
| 112 |
94
|
adantlr |
|
| 113 |
|
simplr |
|
| 114 |
84
|
adantlr |
|
| 115 |
|
rspa |
|
| 116 |
113 114 115
|
syl2anc |
|
| 117 |
112 116
|
mpd |
|
| 118 |
117
|
ex |
|
| 119 |
111 118
|
ralrimi |
|
| 120 |
56
|
raleqdv |
|
| 121 |
120
|
rspcev |
|
| 122 |
108 119 121
|
syl2anc |
|
| 123 |
122
|
rexlimdva2 |
|
| 124 |
6
|
sseli |
|
| 125 |
124
|
ad2antlr |
|
| 126 |
|
nfra1 |
|
| 127 |
19 126
|
nfan |
|
| 128 |
|
simp1r |
|
| 129 |
27
|
3adant1r |
|
| 130 |
|
rspa |
|
| 131 |
128 129 130
|
syl2anc |
|
| 132 |
131
|
3exp |
|
| 133 |
127 132
|
ralrimi |
|
| 134 |
133
|
adantll |
|
| 135 |
9
|
rspceaimv |
|
| 136 |
125 134 135
|
syl2anc |
|
| 137 |
136
|
rexlimdva2 |
|
| 138 |
123 137
|
impbid |
|
| 139 |
138
|
rexbidv |
|
| 140 |
107 139
|
anbi12d |
|
| 141 |
8 140
|
bitrd |
|