Metamath Proof Explorer


Theorem limsupre3uz

Description: Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is less than or equal to the function, infinitely often; 2. there is a real number that is eventually greater than or equal to the function. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupre3uz.1 _ j F
limsupre3uz.2 φ M
limsupre3uz.3 Z = M
limsupre3uz.4 φ F : Z *
Assertion limsupre3uz φ lim sup F x k Z j k x F j x k Z j k F j x

Proof

Step Hyp Ref Expression
1 limsupre3uz.1 _ j F
2 limsupre3uz.2 φ M
3 limsupre3uz.3 Z = M
4 limsupre3uz.4 φ F : Z *
5 nfcv _ l F
6 5 2 3 4 limsupre3uzlem φ lim sup F y i Z l i y F l y i Z l i F l y
7 breq1 y = x y F l x F l
8 7 rexbidv y = x l i y F l l i x F l
9 8 ralbidv y = x i Z l i y F l i Z l i x F l
10 fveq2 i = k i = k
11 10 rexeqdv i = k l i x F l l k x F l
12 nfcv _ j x
13 nfcv _ j
14 nfcv _ j l
15 1 14 nffv _ j F l
16 12 13 15 nfbr j x F l
17 nfv l x F j
18 fveq2 l = j F l = F j
19 18 breq2d l = j x F l x F j
20 16 17 19 cbvrexw l k x F l j k x F j
21 20 a1i i = k l k x F l j k x F j
22 11 21 bitrd i = k l i x F l j k x F j
23 22 cbvralvw i Z l i x F l k Z j k x F j
24 23 a1i y = x i Z l i x F l k Z j k x F j
25 9 24 bitrd y = x i Z l i y F l k Z j k x F j
26 25 cbvrexvw y i Z l i y F l x k Z j k x F j
27 breq2 y = x F l y F l x
28 27 ralbidv y = x l i F l y l i F l x
29 28 rexbidv y = x i Z l i F l y i Z l i F l x
30 10 raleqdv i = k l i F l x l k F l x
31 15 13 12 nfbr j F l x
32 nfv l F j x
33 18 breq1d l = j F l x F j x
34 31 32 33 cbvralw l k F l x j k F j x
35 34 a1i i = k l k F l x j k F j x
36 30 35 bitrd i = k l i F l x j k F j x
37 36 cbvrexvw i Z l i F l x k Z j k F j x
38 37 a1i y = x i Z l i F l x k Z j k F j x
39 29 38 bitrd y = x i Z l i F l y k Z j k F j x
40 39 cbvrexvw y i Z l i F l y x k Z j k F j x
41 26 40 anbi12i y i Z l i y F l y i Z l i F l y x k Z j k x F j x k Z j k F j x
42 41 a1i φ y i Z l i y F l y i Z l i F l y x k Z j k x F j x k Z j k F j x
43 6 42 bitrd φ lim sup F x k Z j k x F j x k Z j k F j x