Metamath Proof Explorer


Theorem limsupre3

Description: Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is less than or equal to the function, at some point, in any upper part of the reals; 2. there is a real number that is eventually greater than or equal to the function. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupre3.1 _ j F
limsupre3.2 φ A
limsupre3.3 φ F : A *
Assertion limsupre3 φ lim sup F x k j A k j x F j x k j A k j F j x

Proof

Step Hyp Ref Expression
1 limsupre3.1 _ j F
2 limsupre3.2 φ A
3 limsupre3.3 φ F : A *
4 nfcv _ l F
5 4 2 3 limsupre3lem φ lim sup F y i l A i l y F l y i l A i l F l y
6 breq1 y = x y F l x F l
7 6 anbi2d y = x i l y F l i l x F l
8 7 rexbidv y = x l A i l y F l l A i l x F l
9 8 ralbidv y = x i l A i l y F l i l A i l x F l
10 breq1 i = k i l k l
11 10 anbi1d i = k i l x F l k l x F l
12 11 rexbidv i = k l A i l x F l l A k l x F l
13 nfv j k l
14 nfcv _ j x
15 nfcv _ j
16 nfcv _ j l
17 1 16 nffv _ j F l
18 14 15 17 nfbr j x F l
19 13 18 nfan j k l x F l
20 nfv l k j x F j
21 breq2 l = j k l k j
22 fveq2 l = j F l = F j
23 22 breq2d l = j x F l x F j
24 21 23 anbi12d l = j k l x F l k j x F j
25 19 20 24 cbvrexw l A k l x F l j A k j x F j
26 25 a1i i = k l A k l x F l j A k j x F j
27 12 26 bitrd i = k l A i l x F l j A k j x F j
28 27 cbvralvw i l A i l x F l k j A k j x F j
29 28 a1i y = x i l A i l x F l k j A k j x F j
30 9 29 bitrd y = x i l A i l y F l k j A k j x F j
31 30 cbvrexvw y i l A i l y F l x k j A k j x F j
32 breq2 y = x F l y F l x
33 32 imbi2d y = x i l F l y i l F l x
34 33 ralbidv y = x l A i l F l y l A i l F l x
35 34 rexbidv y = x i l A i l F l y i l A i l F l x
36 10 imbi1d i = k i l F l x k l F l x
37 36 ralbidv i = k l A i l F l x l A k l F l x
38 17 15 14 nfbr j F l x
39 13 38 nfim j k l F l x
40 nfv l k j F j x
41 22 breq1d l = j F l x F j x
42 21 41 imbi12d l = j k l F l x k j F j x
43 39 40 42 cbvralw l A k l F l x j A k j F j x
44 43 a1i i = k l A k l F l x j A k j F j x
45 37 44 bitrd i = k l A i l F l x j A k j F j x
46 45 cbvrexvw i l A i l F l x k j A k j F j x
47 46 a1i y = x i l A i l F l x k j A k j F j x
48 35 47 bitrd y = x i l A i l F l y k j A k j F j x
49 48 cbvrexvw y i l A i l F l y x k j A k j F j x
50 31 49 anbi12i y i l A i l y F l y i l A i l F l y x k j A k j x F j x k j A k j F j x
51 50 a1i φ y i l A i l y F l y i l A i l F l y x k j A k j x F j x k j A k j F j x
52 5 51 bitrd φ lim sup F x k j A k j x F j x k j A k j F j x