Metamath Proof Explorer


Theorem limsupre3mpt

Description: Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is less than or equal to the function, at some point, in any upper part of the reals; 2. there is a real number that is eventually greater than or equal to the function. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupre3mpt.p xφ
limsupre3mpt.a φA
limsupre3mpt.b φxAB*
Assertion limsupre3mpt φlim supxABykxAkxyBykxAkxBy

Proof

Step Hyp Ref Expression
1 limsupre3mpt.p xφ
2 limsupre3mpt.a φA
3 limsupre3mpt.b φxAB*
4 nfmpt1 _xxAB
5 1 3 fmptd2f φxAB:A*
6 4 2 5 limsupre3 φlim supxABwjxAjxwxABxwjxAjxxABxw
7 eqid xAB=xAB
8 7 a1i φxAB=xAB
9 8 3 fvmpt2d φxAxABx=B
10 9 breq2d φxAwxABxwB
11 10 anbi2d φxAjxwxABxjxwB
12 1 11 rexbida φxAjxwxABxxAjxwB
13 12 ralbidv φjxAjxwxABxjxAjxwB
14 13 rexbidv φwjxAjxwxABxwjxAjxwB
15 9 breq1d φxAxABxwBw
16 15 imbi2d φxAjxxABxwjxBw
17 1 16 ralbida φxAjxxABxwxAjxBw
18 17 rexbidv φjxAjxxABxwjxAjxBw
19 18 rexbidv φwjxAjxxABxwwjxAjxBw
20 14 19 anbi12d φwjxAjxwxABxwjxAjxxABxwwjxAjxwBwjxAjxBw
21 breq1 w=ywByB
22 21 anbi2d w=yjxwBjxyB
23 22 rexbidv w=yxAjxwBxAjxyB
24 23 ralbidv w=yjxAjxwBjxAjxyB
25 breq1 j=kjxkx
26 25 anbi1d j=kjxyBkxyB
27 26 rexbidv j=kxAjxyBxAkxyB
28 27 cbvralvw jxAjxyBkxAkxyB
29 28 a1i w=yjxAjxyBkxAkxyB
30 24 29 bitrd w=yjxAjxwBkxAkxyB
31 30 cbvrexvw wjxAjxwBykxAkxyB
32 breq2 w=yBwBy
33 32 imbi2d w=yjxBwjxBy
34 33 ralbidv w=yxAjxBwxAjxBy
35 34 rexbidv w=yjxAjxBwjxAjxBy
36 25 imbi1d j=kjxBykxBy
37 36 ralbidv j=kxAjxByxAkxBy
38 37 cbvrexvw jxAjxBykxAkxBy
39 38 a1i w=yjxAjxBykxAkxBy
40 35 39 bitrd w=yjxAjxBwkxAkxBy
41 40 cbvrexvw wjxAjxBwykxAkxBy
42 31 41 anbi12i wjxAjxwBwjxAjxBwykxAkxyBykxAkxBy
43 42 a1i φwjxAjxwBwjxAjxBwykxAkxyBykxAkxBy
44 6 20 43 3bitrd φlim supxABykxAkxyBykxAkxBy