Metamath Proof Explorer


Theorem limsupgt

Description: Given a sequence of real numbers, there exists an upper part of the sequence that's appxoximated from below by the superior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses limsupgt.k 𝑘 𝐹
limsupgt.m ( 𝜑𝑀 ∈ ℤ )
limsupgt.z 𝑍 = ( ℤ𝑀 )
limsupgt.f ( 𝜑𝐹 : 𝑍 ⟶ ℝ )
limsupgt.r ( 𝜑 → ( lim sup ‘ 𝐹 ) ∈ ℝ )
limsupgt.x ( 𝜑𝑋 ∈ ℝ+ )
Assertion limsupgt ( 𝜑 → ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( ( 𝐹𝑘 ) − 𝑋 ) < ( lim sup ‘ 𝐹 ) )

Proof

Step Hyp Ref Expression
1 limsupgt.k 𝑘 𝐹
2 limsupgt.m ( 𝜑𝑀 ∈ ℤ )
3 limsupgt.z 𝑍 = ( ℤ𝑀 )
4 limsupgt.f ( 𝜑𝐹 : 𝑍 ⟶ ℝ )
5 limsupgt.r ( 𝜑 → ( lim sup ‘ 𝐹 ) ∈ ℝ )
6 limsupgt.x ( 𝜑𝑋 ∈ ℝ+ )
7 2 3 4 5 6 limsupgtlem ( 𝜑 → ∃ 𝑖𝑍𝑙 ∈ ( ℤ𝑖 ) ( ( 𝐹𝑙 ) − 𝑋 ) < ( lim sup ‘ 𝐹 ) )
8 nfcv 𝑘 𝑙
9 1 8 nffv 𝑘 ( 𝐹𝑙 )
10 nfcv 𝑘
11 nfcv 𝑘 𝑋
12 9 10 11 nfov 𝑘 ( ( 𝐹𝑙 ) − 𝑋 )
13 nfcv 𝑘 <
14 nfcv 𝑘 lim sup
15 14 1 nffv 𝑘 ( lim sup ‘ 𝐹 )
16 12 13 15 nfbr 𝑘 ( ( 𝐹𝑙 ) − 𝑋 ) < ( lim sup ‘ 𝐹 )
17 nfv 𝑙 ( ( 𝐹𝑘 ) − 𝑋 ) < ( lim sup ‘ 𝐹 )
18 fveq2 ( 𝑙 = 𝑘 → ( 𝐹𝑙 ) = ( 𝐹𝑘 ) )
19 18 oveq1d ( 𝑙 = 𝑘 → ( ( 𝐹𝑙 ) − 𝑋 ) = ( ( 𝐹𝑘 ) − 𝑋 ) )
20 19 breq1d ( 𝑙 = 𝑘 → ( ( ( 𝐹𝑙 ) − 𝑋 ) < ( lim sup ‘ 𝐹 ) ↔ ( ( 𝐹𝑘 ) − 𝑋 ) < ( lim sup ‘ 𝐹 ) ) )
21 16 17 20 cbvralw ( ∀ 𝑙 ∈ ( ℤ𝑖 ) ( ( 𝐹𝑙 ) − 𝑋 ) < ( lim sup ‘ 𝐹 ) ↔ ∀ 𝑘 ∈ ( ℤ𝑖 ) ( ( 𝐹𝑘 ) − 𝑋 ) < ( lim sup ‘ 𝐹 ) )
22 21 a1i ( 𝑖 = 𝑗 → ( ∀ 𝑙 ∈ ( ℤ𝑖 ) ( ( 𝐹𝑙 ) − 𝑋 ) < ( lim sup ‘ 𝐹 ) ↔ ∀ 𝑘 ∈ ( ℤ𝑖 ) ( ( 𝐹𝑘 ) − 𝑋 ) < ( lim sup ‘ 𝐹 ) ) )
23 fveq2 ( 𝑖 = 𝑗 → ( ℤ𝑖 ) = ( ℤ𝑗 ) )
24 23 raleqdv ( 𝑖 = 𝑗 → ( ∀ 𝑘 ∈ ( ℤ𝑖 ) ( ( 𝐹𝑘 ) − 𝑋 ) < ( lim sup ‘ 𝐹 ) ↔ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( ( 𝐹𝑘 ) − 𝑋 ) < ( lim sup ‘ 𝐹 ) ) )
25 22 24 bitrd ( 𝑖 = 𝑗 → ( ∀ 𝑙 ∈ ( ℤ𝑖 ) ( ( 𝐹𝑙 ) − 𝑋 ) < ( lim sup ‘ 𝐹 ) ↔ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( ( 𝐹𝑘 ) − 𝑋 ) < ( lim sup ‘ 𝐹 ) ) )
26 25 cbvrexvw ( ∃ 𝑖𝑍𝑙 ∈ ( ℤ𝑖 ) ( ( 𝐹𝑙 ) − 𝑋 ) < ( lim sup ‘ 𝐹 ) ↔ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( ( 𝐹𝑘 ) − 𝑋 ) < ( lim sup ‘ 𝐹 ) )
27 7 26 sylib ( 𝜑 → ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( ( 𝐹𝑘 ) − 𝑋 ) < ( lim sup ‘ 𝐹 ) )