Step |
Hyp |
Ref |
Expression |
1 |
|
limsupgt.k |
⊢ Ⅎ 𝑘 𝐹 |
2 |
|
limsupgt.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
limsupgt.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
4 |
|
limsupgt.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ ) |
5 |
|
limsupgt.r |
⊢ ( 𝜑 → ( lim sup ‘ 𝐹 ) ∈ ℝ ) |
6 |
|
limsupgt.x |
⊢ ( 𝜑 → 𝑋 ∈ ℝ+ ) |
7 |
2 3 4 5 6
|
limsupgtlem |
⊢ ( 𝜑 → ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑙 ) − 𝑋 ) < ( lim sup ‘ 𝐹 ) ) |
8 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑙 |
9 |
1 8
|
nffv |
⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑙 ) |
10 |
|
nfcv |
⊢ Ⅎ 𝑘 − |
11 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑋 |
12 |
9 10 11
|
nfov |
⊢ Ⅎ 𝑘 ( ( 𝐹 ‘ 𝑙 ) − 𝑋 ) |
13 |
|
nfcv |
⊢ Ⅎ 𝑘 < |
14 |
|
nfcv |
⊢ Ⅎ 𝑘 lim sup |
15 |
14 1
|
nffv |
⊢ Ⅎ 𝑘 ( lim sup ‘ 𝐹 ) |
16 |
12 13 15
|
nfbr |
⊢ Ⅎ 𝑘 ( ( 𝐹 ‘ 𝑙 ) − 𝑋 ) < ( lim sup ‘ 𝐹 ) |
17 |
|
nfv |
⊢ Ⅎ 𝑙 ( ( 𝐹 ‘ 𝑘 ) − 𝑋 ) < ( lim sup ‘ 𝐹 ) |
18 |
|
fveq2 |
⊢ ( 𝑙 = 𝑘 → ( 𝐹 ‘ 𝑙 ) = ( 𝐹 ‘ 𝑘 ) ) |
19 |
18
|
oveq1d |
⊢ ( 𝑙 = 𝑘 → ( ( 𝐹 ‘ 𝑙 ) − 𝑋 ) = ( ( 𝐹 ‘ 𝑘 ) − 𝑋 ) ) |
20 |
19
|
breq1d |
⊢ ( 𝑙 = 𝑘 → ( ( ( 𝐹 ‘ 𝑙 ) − 𝑋 ) < ( lim sup ‘ 𝐹 ) ↔ ( ( 𝐹 ‘ 𝑘 ) − 𝑋 ) < ( lim sup ‘ 𝐹 ) ) ) |
21 |
16 17 20
|
cbvralw |
⊢ ( ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑙 ) − 𝑋 ) < ( lim sup ‘ 𝐹 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑘 ) − 𝑋 ) < ( lim sup ‘ 𝐹 ) ) |
22 |
21
|
a1i |
⊢ ( 𝑖 = 𝑗 → ( ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑙 ) − 𝑋 ) < ( lim sup ‘ 𝐹 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑘 ) − 𝑋 ) < ( lim sup ‘ 𝐹 ) ) ) |
23 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( ℤ≥ ‘ 𝑖 ) = ( ℤ≥ ‘ 𝑗 ) ) |
24 |
23
|
raleqdv |
⊢ ( 𝑖 = 𝑗 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑘 ) − 𝑋 ) < ( lim sup ‘ 𝐹 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) − 𝑋 ) < ( lim sup ‘ 𝐹 ) ) ) |
25 |
22 24
|
bitrd |
⊢ ( 𝑖 = 𝑗 → ( ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑙 ) − 𝑋 ) < ( lim sup ‘ 𝐹 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) − 𝑋 ) < ( lim sup ‘ 𝐹 ) ) ) |
26 |
25
|
cbvrexvw |
⊢ ( ∃ 𝑖 ∈ 𝑍 ∀ 𝑙 ∈ ( ℤ≥ ‘ 𝑖 ) ( ( 𝐹 ‘ 𝑙 ) − 𝑋 ) < ( lim sup ‘ 𝐹 ) ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) − 𝑋 ) < ( lim sup ‘ 𝐹 ) ) |
27 |
7 26
|
sylib |
⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) − 𝑋 ) < ( lim sup ‘ 𝐹 ) ) |