Step |
Hyp |
Ref |
Expression |
1 |
|
limsupgt.k |
|- F/_ k F |
2 |
|
limsupgt.m |
|- ( ph -> M e. ZZ ) |
3 |
|
limsupgt.z |
|- Z = ( ZZ>= ` M ) |
4 |
|
limsupgt.f |
|- ( ph -> F : Z --> RR ) |
5 |
|
limsupgt.r |
|- ( ph -> ( limsup ` F ) e. RR ) |
6 |
|
limsupgt.x |
|- ( ph -> X e. RR+ ) |
7 |
2 3 4 5 6
|
limsupgtlem |
|- ( ph -> E. i e. Z A. l e. ( ZZ>= ` i ) ( ( F ` l ) - X ) < ( limsup ` F ) ) |
8 |
|
nfcv |
|- F/_ k l |
9 |
1 8
|
nffv |
|- F/_ k ( F ` l ) |
10 |
|
nfcv |
|- F/_ k - |
11 |
|
nfcv |
|- F/_ k X |
12 |
9 10 11
|
nfov |
|- F/_ k ( ( F ` l ) - X ) |
13 |
|
nfcv |
|- F/_ k < |
14 |
|
nfcv |
|- F/_ k limsup |
15 |
14 1
|
nffv |
|- F/_ k ( limsup ` F ) |
16 |
12 13 15
|
nfbr |
|- F/ k ( ( F ` l ) - X ) < ( limsup ` F ) |
17 |
|
nfv |
|- F/ l ( ( F ` k ) - X ) < ( limsup ` F ) |
18 |
|
fveq2 |
|- ( l = k -> ( F ` l ) = ( F ` k ) ) |
19 |
18
|
oveq1d |
|- ( l = k -> ( ( F ` l ) - X ) = ( ( F ` k ) - X ) ) |
20 |
19
|
breq1d |
|- ( l = k -> ( ( ( F ` l ) - X ) < ( limsup ` F ) <-> ( ( F ` k ) - X ) < ( limsup ` F ) ) ) |
21 |
16 17 20
|
cbvralw |
|- ( A. l e. ( ZZ>= ` i ) ( ( F ` l ) - X ) < ( limsup ` F ) <-> A. k e. ( ZZ>= ` i ) ( ( F ` k ) - X ) < ( limsup ` F ) ) |
22 |
21
|
a1i |
|- ( i = j -> ( A. l e. ( ZZ>= ` i ) ( ( F ` l ) - X ) < ( limsup ` F ) <-> A. k e. ( ZZ>= ` i ) ( ( F ` k ) - X ) < ( limsup ` F ) ) ) |
23 |
|
fveq2 |
|- ( i = j -> ( ZZ>= ` i ) = ( ZZ>= ` j ) ) |
24 |
23
|
raleqdv |
|- ( i = j -> ( A. k e. ( ZZ>= ` i ) ( ( F ` k ) - X ) < ( limsup ` F ) <-> A. k e. ( ZZ>= ` j ) ( ( F ` k ) - X ) < ( limsup ` F ) ) ) |
25 |
22 24
|
bitrd |
|- ( i = j -> ( A. l e. ( ZZ>= ` i ) ( ( F ` l ) - X ) < ( limsup ` F ) <-> A. k e. ( ZZ>= ` j ) ( ( F ` k ) - X ) < ( limsup ` F ) ) ) |
26 |
25
|
cbvrexvw |
|- ( E. i e. Z A. l e. ( ZZ>= ` i ) ( ( F ` l ) - X ) < ( limsup ` F ) <-> E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) - X ) < ( limsup ` F ) ) |
27 |
7 26
|
sylib |
|- ( ph -> E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) - X ) < ( limsup ` F ) ) |