| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limsupgtlem.m |
|- ( ph -> M e. ZZ ) |
| 2 |
|
limsupgtlem.z |
|- Z = ( ZZ>= ` M ) |
| 3 |
|
limsupgtlem.f |
|- ( ph -> F : Z --> RR ) |
| 4 |
|
limsupgtlem.r |
|- ( ph -> ( limsup ` F ) e. RR ) |
| 5 |
|
limsupgtlem.x |
|- ( ph -> X e. RR+ ) |
| 6 |
|
nfv |
|- F/ j ph |
| 7 |
1 2
|
uzn0d |
|- ( ph -> Z =/= (/) ) |
| 8 |
|
rnresss |
|- ran ( F |` ( ZZ>= ` j ) ) C_ ran F |
| 9 |
8
|
a1i |
|- ( ph -> ran ( F |` ( ZZ>= ` j ) ) C_ ran F ) |
| 10 |
3
|
frexr |
|- ( ph -> F : Z --> RR* ) |
| 11 |
10
|
frnd |
|- ( ph -> ran F C_ RR* ) |
| 12 |
9 11
|
sstrd |
|- ( ph -> ran ( F |` ( ZZ>= ` j ) ) C_ RR* ) |
| 13 |
12
|
supxrcld |
|- ( ph -> sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) e. RR* ) |
| 14 |
13
|
adantr |
|- ( ( ph /\ j e. Z ) -> sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) e. RR* ) |
| 15 |
|
nfcv |
|- F/_ k F |
| 16 |
15 1 2 3
|
limsupreuz |
|- ( ph -> ( ( limsup ` F ) e. RR <-> ( E. x e. RR A. j e. Z E. k e. ( ZZ>= ` j ) x <_ ( F ` k ) /\ E. x e. RR A. k e. Z ( F ` k ) <_ x ) ) ) |
| 17 |
4 16
|
mpbid |
|- ( ph -> ( E. x e. RR A. j e. Z E. k e. ( ZZ>= ` j ) x <_ ( F ` k ) /\ E. x e. RR A. k e. Z ( F ` k ) <_ x ) ) |
| 18 |
17
|
simpld |
|- ( ph -> E. x e. RR A. j e. Z E. k e. ( ZZ>= ` j ) x <_ ( F ` k ) ) |
| 19 |
|
rexr |
|- ( x e. RR -> x e. RR* ) |
| 20 |
19
|
ad4antlr |
|- ( ( ( ( ( ph /\ x e. RR ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) /\ x <_ ( F ` k ) ) -> x e. RR* ) |
| 21 |
3
|
ad2antrr |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> F : Z --> RR ) |
| 22 |
2
|
uztrn2 |
|- ( ( j e. Z /\ k e. ( ZZ>= ` j ) ) -> k e. Z ) |
| 23 |
22
|
adantll |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> k e. Z ) |
| 24 |
21 23
|
ffvelcdmd |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( F ` k ) e. RR ) |
| 25 |
24
|
rexrd |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( F ` k ) e. RR* ) |
| 26 |
25
|
3impa |
|- ( ( ph /\ j e. Z /\ k e. ( ZZ>= ` j ) ) -> ( F ` k ) e. RR* ) |
| 27 |
26
|
ad5ant134 |
|- ( ( ( ( ( ph /\ x e. RR ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) /\ x <_ ( F ` k ) ) -> ( F ` k ) e. RR* ) |
| 28 |
13
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. RR ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) /\ x <_ ( F ` k ) ) -> sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) e. RR* ) |
| 29 |
|
simpr |
|- ( ( ( ( ( ph /\ x e. RR ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) /\ x <_ ( F ` k ) ) -> x <_ ( F ` k ) ) |
| 30 |
12
|
ad2antrr |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ran ( F |` ( ZZ>= ` j ) ) C_ RR* ) |
| 31 |
|
fvres |
|- ( k e. ( ZZ>= ` j ) -> ( ( F |` ( ZZ>= ` j ) ) ` k ) = ( F ` k ) ) |
| 32 |
31
|
eqcomd |
|- ( k e. ( ZZ>= ` j ) -> ( F ` k ) = ( ( F |` ( ZZ>= ` j ) ) ` k ) ) |
| 33 |
32
|
adantl |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( F ` k ) = ( ( F |` ( ZZ>= ` j ) ) ` k ) ) |
| 34 |
3
|
ffnd |
|- ( ph -> F Fn Z ) |
| 35 |
34
|
adantr |
|- ( ( ph /\ j e. Z ) -> F Fn Z ) |
| 36 |
23
|
ssd |
|- ( ( ph /\ j e. Z ) -> ( ZZ>= ` j ) C_ Z ) |
| 37 |
|
fnssres |
|- ( ( F Fn Z /\ ( ZZ>= ` j ) C_ Z ) -> ( F |` ( ZZ>= ` j ) ) Fn ( ZZ>= ` j ) ) |
| 38 |
35 36 37
|
syl2anc |
|- ( ( ph /\ j e. Z ) -> ( F |` ( ZZ>= ` j ) ) Fn ( ZZ>= ` j ) ) |
| 39 |
38
|
adantr |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( F |` ( ZZ>= ` j ) ) Fn ( ZZ>= ` j ) ) |
| 40 |
|
simpr |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> k e. ( ZZ>= ` j ) ) |
| 41 |
39 40
|
fnfvelrnd |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( ( F |` ( ZZ>= ` j ) ) ` k ) e. ran ( F |` ( ZZ>= ` j ) ) ) |
| 42 |
33 41
|
eqeltrd |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( F ` k ) e. ran ( F |` ( ZZ>= ` j ) ) ) |
| 43 |
|
eqid |
|- sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) = sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) |
| 44 |
30 42 43
|
supxrubd |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( F ` k ) <_ sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) ) |
| 45 |
44
|
3impa |
|- ( ( ph /\ j e. Z /\ k e. ( ZZ>= ` j ) ) -> ( F ` k ) <_ sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) ) |
| 46 |
45
|
ad5ant134 |
|- ( ( ( ( ( ph /\ x e. RR ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) /\ x <_ ( F ` k ) ) -> ( F ` k ) <_ sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) ) |
| 47 |
20 27 28 29 46
|
xrletrd |
|- ( ( ( ( ( ph /\ x e. RR ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) /\ x <_ ( F ` k ) ) -> x <_ sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) ) |
| 48 |
47
|
rexlimdva2 |
|- ( ( ( ph /\ x e. RR ) /\ j e. Z ) -> ( E. k e. ( ZZ>= ` j ) x <_ ( F ` k ) -> x <_ sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) ) ) |
| 49 |
48
|
ralimdva |
|- ( ( ph /\ x e. RR ) -> ( A. j e. Z E. k e. ( ZZ>= ` j ) x <_ ( F ` k ) -> A. j e. Z x <_ sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) ) ) |
| 50 |
49
|
reximdva |
|- ( ph -> ( E. x e. RR A. j e. Z E. k e. ( ZZ>= ` j ) x <_ ( F ` k ) -> E. x e. RR A. j e. Z x <_ sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) ) ) |
| 51 |
18 50
|
mpd |
|- ( ph -> E. x e. RR A. j e. Z x <_ sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) ) |
| 52 |
5
|
rphalfcld |
|- ( ph -> ( X / 2 ) e. RR+ ) |
| 53 |
6 7 14 51 52
|
infrpgernmpt |
|- ( ph -> E. j e. Z sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) <_ ( inf ( ran ( j e. Z |-> sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) ) , RR* , < ) +e ( X / 2 ) ) ) |
| 54 |
|
simp3 |
|- ( ( ph /\ j e. Z /\ sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) <_ ( inf ( ran ( j e. Z |-> sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) ) , RR* , < ) +e ( X / 2 ) ) ) -> sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) <_ ( inf ( ran ( j e. Z |-> sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) ) , RR* , < ) +e ( X / 2 ) ) ) |
| 55 |
1 2 10
|
limsupvaluz |
|- ( ph -> ( limsup ` F ) = inf ( ran ( j e. Z |-> sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) ) , RR* , < ) ) |
| 56 |
55
|
eqcomd |
|- ( ph -> inf ( ran ( j e. Z |-> sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) ) , RR* , < ) = ( limsup ` F ) ) |
| 57 |
56
|
oveq1d |
|- ( ph -> ( inf ( ran ( j e. Z |-> sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) ) , RR* , < ) +e ( X / 2 ) ) = ( ( limsup ` F ) +e ( X / 2 ) ) ) |
| 58 |
57
|
3ad2ant1 |
|- ( ( ph /\ j e. Z /\ sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) <_ ( inf ( ran ( j e. Z |-> sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) ) , RR* , < ) +e ( X / 2 ) ) ) -> ( inf ( ran ( j e. Z |-> sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) ) , RR* , < ) +e ( X / 2 ) ) = ( ( limsup ` F ) +e ( X / 2 ) ) ) |
| 59 |
54 58
|
breqtrd |
|- ( ( ph /\ j e. Z /\ sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) <_ ( inf ( ran ( j e. Z |-> sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) ) , RR* , < ) +e ( X / 2 ) ) ) -> sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) <_ ( ( limsup ` F ) +e ( X / 2 ) ) ) |
| 60 |
25
|
3adantl3 |
|- ( ( ( ph /\ j e. Z /\ sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) <_ ( ( limsup ` F ) +e ( X / 2 ) ) ) /\ k e. ( ZZ>= ` j ) ) -> ( F ` k ) e. RR* ) |
| 61 |
|
simpl1 |
|- ( ( ( ph /\ j e. Z /\ sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) <_ ( ( limsup ` F ) +e ( X / 2 ) ) ) /\ k e. ( ZZ>= ` j ) ) -> ph ) |
| 62 |
61 13
|
syl |
|- ( ( ( ph /\ j e. Z /\ sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) <_ ( ( limsup ` F ) +e ( X / 2 ) ) ) /\ k e. ( ZZ>= ` j ) ) -> sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) e. RR* ) |
| 63 |
2
|
fvexi |
|- Z e. _V |
| 64 |
63
|
a1i |
|- ( ph -> Z e. _V ) |
| 65 |
3 64
|
fexd |
|- ( ph -> F e. _V ) |
| 66 |
65
|
limsupcld |
|- ( ph -> ( limsup ` F ) e. RR* ) |
| 67 |
5
|
rpred |
|- ( ph -> X e. RR ) |
| 68 |
67
|
rehalfcld |
|- ( ph -> ( X / 2 ) e. RR ) |
| 69 |
68
|
rexrd |
|- ( ph -> ( X / 2 ) e. RR* ) |
| 70 |
66 69
|
xaddcld |
|- ( ph -> ( ( limsup ` F ) +e ( X / 2 ) ) e. RR* ) |
| 71 |
61 70
|
syl |
|- ( ( ( ph /\ j e. Z /\ sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) <_ ( ( limsup ` F ) +e ( X / 2 ) ) ) /\ k e. ( ZZ>= ` j ) ) -> ( ( limsup ` F ) +e ( X / 2 ) ) e. RR* ) |
| 72 |
44
|
3adantl3 |
|- ( ( ( ph /\ j e. Z /\ sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) <_ ( ( limsup ` F ) +e ( X / 2 ) ) ) /\ k e. ( ZZ>= ` j ) ) -> ( F ` k ) <_ sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) ) |
| 73 |
|
simpl3 |
|- ( ( ( ph /\ j e. Z /\ sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) <_ ( ( limsup ` F ) +e ( X / 2 ) ) ) /\ k e. ( ZZ>= ` j ) ) -> sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) <_ ( ( limsup ` F ) +e ( X / 2 ) ) ) |
| 74 |
60 62 71 72 73
|
xrletrd |
|- ( ( ( ph /\ j e. Z /\ sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) <_ ( ( limsup ` F ) +e ( X / 2 ) ) ) /\ k e. ( ZZ>= ` j ) ) -> ( F ` k ) <_ ( ( limsup ` F ) +e ( X / 2 ) ) ) |
| 75 |
4 68
|
rexaddd |
|- ( ph -> ( ( limsup ` F ) +e ( X / 2 ) ) = ( ( limsup ` F ) + ( X / 2 ) ) ) |
| 76 |
61 75
|
syl |
|- ( ( ( ph /\ j e. Z /\ sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) <_ ( ( limsup ` F ) +e ( X / 2 ) ) ) /\ k e. ( ZZ>= ` j ) ) -> ( ( limsup ` F ) +e ( X / 2 ) ) = ( ( limsup ` F ) + ( X / 2 ) ) ) |
| 77 |
74 76
|
breqtrd |
|- ( ( ( ph /\ j e. Z /\ sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) <_ ( ( limsup ` F ) +e ( X / 2 ) ) ) /\ k e. ( ZZ>= ` j ) ) -> ( F ` k ) <_ ( ( limsup ` F ) + ( X / 2 ) ) ) |
| 78 |
68
|
ad2antrr |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( X / 2 ) e. RR ) |
| 79 |
4
|
ad2antrr |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( limsup ` F ) e. RR ) |
| 80 |
24 78 79
|
lesubaddd |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( ( ( F ` k ) - ( X / 2 ) ) <_ ( limsup ` F ) <-> ( F ` k ) <_ ( ( limsup ` F ) + ( X / 2 ) ) ) ) |
| 81 |
80
|
3adantl3 |
|- ( ( ( ph /\ j e. Z /\ sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) <_ ( ( limsup ` F ) +e ( X / 2 ) ) ) /\ k e. ( ZZ>= ` j ) ) -> ( ( ( F ` k ) - ( X / 2 ) ) <_ ( limsup ` F ) <-> ( F ` k ) <_ ( ( limsup ` F ) + ( X / 2 ) ) ) ) |
| 82 |
77 81
|
mpbird |
|- ( ( ( ph /\ j e. Z /\ sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) <_ ( ( limsup ` F ) +e ( X / 2 ) ) ) /\ k e. ( ZZ>= ` j ) ) -> ( ( F ` k ) - ( X / 2 ) ) <_ ( limsup ` F ) ) |
| 83 |
82
|
ralrimiva |
|- ( ( ph /\ j e. Z /\ sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) <_ ( ( limsup ` F ) +e ( X / 2 ) ) ) -> A. k e. ( ZZ>= ` j ) ( ( F ` k ) - ( X / 2 ) ) <_ ( limsup ` F ) ) |
| 84 |
59 83
|
syld3an3 |
|- ( ( ph /\ j e. Z /\ sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) <_ ( inf ( ran ( j e. Z |-> sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) ) , RR* , < ) +e ( X / 2 ) ) ) -> A. k e. ( ZZ>= ` j ) ( ( F ` k ) - ( X / 2 ) ) <_ ( limsup ` F ) ) |
| 85 |
84
|
3exp |
|- ( ph -> ( j e. Z -> ( sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) <_ ( inf ( ran ( j e. Z |-> sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) ) , RR* , < ) +e ( X / 2 ) ) -> A. k e. ( ZZ>= ` j ) ( ( F ` k ) - ( X / 2 ) ) <_ ( limsup ` F ) ) ) ) |
| 86 |
6 85
|
reximdai |
|- ( ph -> ( E. j e. Z sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) <_ ( inf ( ran ( j e. Z |-> sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) ) , RR* , < ) +e ( X / 2 ) ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) - ( X / 2 ) ) <_ ( limsup ` F ) ) ) |
| 87 |
53 86
|
mpd |
|- ( ph -> E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) - ( X / 2 ) ) <_ ( limsup ` F ) ) |
| 88 |
|
simpll |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ph ) |
| 89 |
3
|
ffvelcdmda |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
| 90 |
67
|
adantr |
|- ( ( ph /\ k e. Z ) -> X e. RR ) |
| 91 |
89 90
|
resubcld |
|- ( ( ph /\ k e. Z ) -> ( ( F ` k ) - X ) e. RR ) |
| 92 |
91
|
adantr |
|- ( ( ( ph /\ k e. Z ) /\ ( ( F ` k ) - ( X / 2 ) ) <_ ( limsup ` F ) ) -> ( ( F ` k ) - X ) e. RR ) |
| 93 |
68
|
adantr |
|- ( ( ph /\ k e. Z ) -> ( X / 2 ) e. RR ) |
| 94 |
89 93
|
resubcld |
|- ( ( ph /\ k e. Z ) -> ( ( F ` k ) - ( X / 2 ) ) e. RR ) |
| 95 |
94
|
adantr |
|- ( ( ( ph /\ k e. Z ) /\ ( ( F ` k ) - ( X / 2 ) ) <_ ( limsup ` F ) ) -> ( ( F ` k ) - ( X / 2 ) ) e. RR ) |
| 96 |
4
|
ad2antrr |
|- ( ( ( ph /\ k e. Z ) /\ ( ( F ` k ) - ( X / 2 ) ) <_ ( limsup ` F ) ) -> ( limsup ` F ) e. RR ) |
| 97 |
5
|
rphalfltd |
|- ( ph -> ( X / 2 ) < X ) |
| 98 |
97
|
adantr |
|- ( ( ph /\ k e. Z ) -> ( X / 2 ) < X ) |
| 99 |
93 90 89 98
|
ltsub2dd |
|- ( ( ph /\ k e. Z ) -> ( ( F ` k ) - X ) < ( ( F ` k ) - ( X / 2 ) ) ) |
| 100 |
99
|
adantr |
|- ( ( ( ph /\ k e. Z ) /\ ( ( F ` k ) - ( X / 2 ) ) <_ ( limsup ` F ) ) -> ( ( F ` k ) - X ) < ( ( F ` k ) - ( X / 2 ) ) ) |
| 101 |
|
simpr |
|- ( ( ( ph /\ k e. Z ) /\ ( ( F ` k ) - ( X / 2 ) ) <_ ( limsup ` F ) ) -> ( ( F ` k ) - ( X / 2 ) ) <_ ( limsup ` F ) ) |
| 102 |
92 95 96 100 101
|
ltletrd |
|- ( ( ( ph /\ k e. Z ) /\ ( ( F ` k ) - ( X / 2 ) ) <_ ( limsup ` F ) ) -> ( ( F ` k ) - X ) < ( limsup ` F ) ) |
| 103 |
102
|
ex |
|- ( ( ph /\ k e. Z ) -> ( ( ( F ` k ) - ( X / 2 ) ) <_ ( limsup ` F ) -> ( ( F ` k ) - X ) < ( limsup ` F ) ) ) |
| 104 |
88 23 103
|
syl2anc |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( ( ( F ` k ) - ( X / 2 ) ) <_ ( limsup ` F ) -> ( ( F ` k ) - X ) < ( limsup ` F ) ) ) |
| 105 |
104
|
ralimdva |
|- ( ( ph /\ j e. Z ) -> ( A. k e. ( ZZ>= ` j ) ( ( F ` k ) - ( X / 2 ) ) <_ ( limsup ` F ) -> A. k e. ( ZZ>= ` j ) ( ( F ` k ) - X ) < ( limsup ` F ) ) ) |
| 106 |
105
|
reximdva |
|- ( ph -> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) - ( X / 2 ) ) <_ ( limsup ` F ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) - X ) < ( limsup ` F ) ) ) |
| 107 |
87 106
|
mpd |
|- ( ph -> E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) - X ) < ( limsup ` F ) ) |