Step |
Hyp |
Ref |
Expression |
1 |
|
limsupgtlem.m |
|- ( ph -> M e. ZZ ) |
2 |
|
limsupgtlem.z |
|- Z = ( ZZ>= ` M ) |
3 |
|
limsupgtlem.f |
|- ( ph -> F : Z --> RR ) |
4 |
|
limsupgtlem.r |
|- ( ph -> ( limsup ` F ) e. RR ) |
5 |
|
limsupgtlem.x |
|- ( ph -> X e. RR+ ) |
6 |
|
nfv |
|- F/ j ph |
7 |
1 2
|
uzn0d |
|- ( ph -> Z =/= (/) ) |
8 |
|
rnresss |
|- ran ( F |` ( ZZ>= ` j ) ) C_ ran F |
9 |
8
|
a1i |
|- ( ph -> ran ( F |` ( ZZ>= ` j ) ) C_ ran F ) |
10 |
3
|
frexr |
|- ( ph -> F : Z --> RR* ) |
11 |
10
|
frnd |
|- ( ph -> ran F C_ RR* ) |
12 |
9 11
|
sstrd |
|- ( ph -> ran ( F |` ( ZZ>= ` j ) ) C_ RR* ) |
13 |
12
|
supxrcld |
|- ( ph -> sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) e. RR* ) |
14 |
13
|
adantr |
|- ( ( ph /\ j e. Z ) -> sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) e. RR* ) |
15 |
|
nfcv |
|- F/_ k F |
16 |
15 1 2 3
|
limsupreuz |
|- ( ph -> ( ( limsup ` F ) e. RR <-> ( E. x e. RR A. j e. Z E. k e. ( ZZ>= ` j ) x <_ ( F ` k ) /\ E. x e. RR A. k e. Z ( F ` k ) <_ x ) ) ) |
17 |
4 16
|
mpbid |
|- ( ph -> ( E. x e. RR A. j e. Z E. k e. ( ZZ>= ` j ) x <_ ( F ` k ) /\ E. x e. RR A. k e. Z ( F ` k ) <_ x ) ) |
18 |
17
|
simpld |
|- ( ph -> E. x e. RR A. j e. Z E. k e. ( ZZ>= ` j ) x <_ ( F ` k ) ) |
19 |
|
rexr |
|- ( x e. RR -> x e. RR* ) |
20 |
19
|
ad4antlr |
|- ( ( ( ( ( ph /\ x e. RR ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) /\ x <_ ( F ` k ) ) -> x e. RR* ) |
21 |
3
|
ad2antrr |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> F : Z --> RR ) |
22 |
2
|
uztrn2 |
|- ( ( j e. Z /\ k e. ( ZZ>= ` j ) ) -> k e. Z ) |
23 |
22
|
adantll |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> k e. Z ) |
24 |
21 23
|
ffvelrnd |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( F ` k ) e. RR ) |
25 |
24
|
rexrd |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( F ` k ) e. RR* ) |
26 |
25
|
3impa |
|- ( ( ph /\ j e. Z /\ k e. ( ZZ>= ` j ) ) -> ( F ` k ) e. RR* ) |
27 |
26
|
ad5ant134 |
|- ( ( ( ( ( ph /\ x e. RR ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) /\ x <_ ( F ` k ) ) -> ( F ` k ) e. RR* ) |
28 |
13
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. RR ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) /\ x <_ ( F ` k ) ) -> sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) e. RR* ) |
29 |
|
simpr |
|- ( ( ( ( ( ph /\ x e. RR ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) /\ x <_ ( F ` k ) ) -> x <_ ( F ` k ) ) |
30 |
12
|
ad2antrr |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ran ( F |` ( ZZ>= ` j ) ) C_ RR* ) |
31 |
|
fvres |
|- ( k e. ( ZZ>= ` j ) -> ( ( F |` ( ZZ>= ` j ) ) ` k ) = ( F ` k ) ) |
32 |
31
|
eqcomd |
|- ( k e. ( ZZ>= ` j ) -> ( F ` k ) = ( ( F |` ( ZZ>= ` j ) ) ` k ) ) |
33 |
32
|
adantl |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( F ` k ) = ( ( F |` ( ZZ>= ` j ) ) ` k ) ) |
34 |
3
|
ffnd |
|- ( ph -> F Fn Z ) |
35 |
34
|
adantr |
|- ( ( ph /\ j e. Z ) -> F Fn Z ) |
36 |
23
|
ssd |
|- ( ( ph /\ j e. Z ) -> ( ZZ>= ` j ) C_ Z ) |
37 |
|
fnssres |
|- ( ( F Fn Z /\ ( ZZ>= ` j ) C_ Z ) -> ( F |` ( ZZ>= ` j ) ) Fn ( ZZ>= ` j ) ) |
38 |
35 36 37
|
syl2anc |
|- ( ( ph /\ j e. Z ) -> ( F |` ( ZZ>= ` j ) ) Fn ( ZZ>= ` j ) ) |
39 |
38
|
adantr |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( F |` ( ZZ>= ` j ) ) Fn ( ZZ>= ` j ) ) |
40 |
|
simpr |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> k e. ( ZZ>= ` j ) ) |
41 |
39 40
|
fnfvelrnd |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( ( F |` ( ZZ>= ` j ) ) ` k ) e. ran ( F |` ( ZZ>= ` j ) ) ) |
42 |
33 41
|
eqeltrd |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( F ` k ) e. ran ( F |` ( ZZ>= ` j ) ) ) |
43 |
|
eqid |
|- sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) = sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) |
44 |
30 42 43
|
supxrubd |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( F ` k ) <_ sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) ) |
45 |
44
|
3impa |
|- ( ( ph /\ j e. Z /\ k e. ( ZZ>= ` j ) ) -> ( F ` k ) <_ sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) ) |
46 |
45
|
ad5ant134 |
|- ( ( ( ( ( ph /\ x e. RR ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) /\ x <_ ( F ` k ) ) -> ( F ` k ) <_ sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) ) |
47 |
20 27 28 29 46
|
xrletrd |
|- ( ( ( ( ( ph /\ x e. RR ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) /\ x <_ ( F ` k ) ) -> x <_ sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) ) |
48 |
47
|
rexlimdva2 |
|- ( ( ( ph /\ x e. RR ) /\ j e. Z ) -> ( E. k e. ( ZZ>= ` j ) x <_ ( F ` k ) -> x <_ sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) ) ) |
49 |
48
|
ralimdva |
|- ( ( ph /\ x e. RR ) -> ( A. j e. Z E. k e. ( ZZ>= ` j ) x <_ ( F ` k ) -> A. j e. Z x <_ sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) ) ) |
50 |
49
|
reximdva |
|- ( ph -> ( E. x e. RR A. j e. Z E. k e. ( ZZ>= ` j ) x <_ ( F ` k ) -> E. x e. RR A. j e. Z x <_ sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) ) ) |
51 |
18 50
|
mpd |
|- ( ph -> E. x e. RR A. j e. Z x <_ sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) ) |
52 |
5
|
rphalfcld |
|- ( ph -> ( X / 2 ) e. RR+ ) |
53 |
6 7 14 51 52
|
infrpgernmpt |
|- ( ph -> E. j e. Z sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) <_ ( inf ( ran ( j e. Z |-> sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) ) , RR* , < ) +e ( X / 2 ) ) ) |
54 |
|
simp3 |
|- ( ( ph /\ j e. Z /\ sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) <_ ( inf ( ran ( j e. Z |-> sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) ) , RR* , < ) +e ( X / 2 ) ) ) -> sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) <_ ( inf ( ran ( j e. Z |-> sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) ) , RR* , < ) +e ( X / 2 ) ) ) |
55 |
1 2 10
|
limsupvaluz |
|- ( ph -> ( limsup ` F ) = inf ( ran ( j e. Z |-> sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) ) , RR* , < ) ) |
56 |
55
|
eqcomd |
|- ( ph -> inf ( ran ( j e. Z |-> sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) ) , RR* , < ) = ( limsup ` F ) ) |
57 |
56
|
oveq1d |
|- ( ph -> ( inf ( ran ( j e. Z |-> sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) ) , RR* , < ) +e ( X / 2 ) ) = ( ( limsup ` F ) +e ( X / 2 ) ) ) |
58 |
57
|
3ad2ant1 |
|- ( ( ph /\ j e. Z /\ sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) <_ ( inf ( ran ( j e. Z |-> sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) ) , RR* , < ) +e ( X / 2 ) ) ) -> ( inf ( ran ( j e. Z |-> sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) ) , RR* , < ) +e ( X / 2 ) ) = ( ( limsup ` F ) +e ( X / 2 ) ) ) |
59 |
54 58
|
breqtrd |
|- ( ( ph /\ j e. Z /\ sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) <_ ( inf ( ran ( j e. Z |-> sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) ) , RR* , < ) +e ( X / 2 ) ) ) -> sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) <_ ( ( limsup ` F ) +e ( X / 2 ) ) ) |
60 |
25
|
3adantl3 |
|- ( ( ( ph /\ j e. Z /\ sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) <_ ( ( limsup ` F ) +e ( X / 2 ) ) ) /\ k e. ( ZZ>= ` j ) ) -> ( F ` k ) e. RR* ) |
61 |
|
simpl1 |
|- ( ( ( ph /\ j e. Z /\ sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) <_ ( ( limsup ` F ) +e ( X / 2 ) ) ) /\ k e. ( ZZ>= ` j ) ) -> ph ) |
62 |
61 13
|
syl |
|- ( ( ( ph /\ j e. Z /\ sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) <_ ( ( limsup ` F ) +e ( X / 2 ) ) ) /\ k e. ( ZZ>= ` j ) ) -> sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) e. RR* ) |
63 |
2
|
fvexi |
|- Z e. _V |
64 |
63
|
a1i |
|- ( ph -> Z e. _V ) |
65 |
3 64
|
fexd |
|- ( ph -> F e. _V ) |
66 |
65
|
limsupcld |
|- ( ph -> ( limsup ` F ) e. RR* ) |
67 |
5
|
rpred |
|- ( ph -> X e. RR ) |
68 |
67
|
rehalfcld |
|- ( ph -> ( X / 2 ) e. RR ) |
69 |
68
|
rexrd |
|- ( ph -> ( X / 2 ) e. RR* ) |
70 |
66 69
|
xaddcld |
|- ( ph -> ( ( limsup ` F ) +e ( X / 2 ) ) e. RR* ) |
71 |
61 70
|
syl |
|- ( ( ( ph /\ j e. Z /\ sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) <_ ( ( limsup ` F ) +e ( X / 2 ) ) ) /\ k e. ( ZZ>= ` j ) ) -> ( ( limsup ` F ) +e ( X / 2 ) ) e. RR* ) |
72 |
44
|
3adantl3 |
|- ( ( ( ph /\ j e. Z /\ sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) <_ ( ( limsup ` F ) +e ( X / 2 ) ) ) /\ k e. ( ZZ>= ` j ) ) -> ( F ` k ) <_ sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) ) |
73 |
|
simpl3 |
|- ( ( ( ph /\ j e. Z /\ sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) <_ ( ( limsup ` F ) +e ( X / 2 ) ) ) /\ k e. ( ZZ>= ` j ) ) -> sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) <_ ( ( limsup ` F ) +e ( X / 2 ) ) ) |
74 |
60 62 71 72 73
|
xrletrd |
|- ( ( ( ph /\ j e. Z /\ sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) <_ ( ( limsup ` F ) +e ( X / 2 ) ) ) /\ k e. ( ZZ>= ` j ) ) -> ( F ` k ) <_ ( ( limsup ` F ) +e ( X / 2 ) ) ) |
75 |
4 68
|
rexaddd |
|- ( ph -> ( ( limsup ` F ) +e ( X / 2 ) ) = ( ( limsup ` F ) + ( X / 2 ) ) ) |
76 |
61 75
|
syl |
|- ( ( ( ph /\ j e. Z /\ sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) <_ ( ( limsup ` F ) +e ( X / 2 ) ) ) /\ k e. ( ZZ>= ` j ) ) -> ( ( limsup ` F ) +e ( X / 2 ) ) = ( ( limsup ` F ) + ( X / 2 ) ) ) |
77 |
74 76
|
breqtrd |
|- ( ( ( ph /\ j e. Z /\ sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) <_ ( ( limsup ` F ) +e ( X / 2 ) ) ) /\ k e. ( ZZ>= ` j ) ) -> ( F ` k ) <_ ( ( limsup ` F ) + ( X / 2 ) ) ) |
78 |
68
|
ad2antrr |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( X / 2 ) e. RR ) |
79 |
4
|
ad2antrr |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( limsup ` F ) e. RR ) |
80 |
24 78 79
|
lesubaddd |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( ( ( F ` k ) - ( X / 2 ) ) <_ ( limsup ` F ) <-> ( F ` k ) <_ ( ( limsup ` F ) + ( X / 2 ) ) ) ) |
81 |
80
|
3adantl3 |
|- ( ( ( ph /\ j e. Z /\ sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) <_ ( ( limsup ` F ) +e ( X / 2 ) ) ) /\ k e. ( ZZ>= ` j ) ) -> ( ( ( F ` k ) - ( X / 2 ) ) <_ ( limsup ` F ) <-> ( F ` k ) <_ ( ( limsup ` F ) + ( X / 2 ) ) ) ) |
82 |
77 81
|
mpbird |
|- ( ( ( ph /\ j e. Z /\ sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) <_ ( ( limsup ` F ) +e ( X / 2 ) ) ) /\ k e. ( ZZ>= ` j ) ) -> ( ( F ` k ) - ( X / 2 ) ) <_ ( limsup ` F ) ) |
83 |
82
|
ralrimiva |
|- ( ( ph /\ j e. Z /\ sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) <_ ( ( limsup ` F ) +e ( X / 2 ) ) ) -> A. k e. ( ZZ>= ` j ) ( ( F ` k ) - ( X / 2 ) ) <_ ( limsup ` F ) ) |
84 |
59 83
|
syld3an3 |
|- ( ( ph /\ j e. Z /\ sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) <_ ( inf ( ran ( j e. Z |-> sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) ) , RR* , < ) +e ( X / 2 ) ) ) -> A. k e. ( ZZ>= ` j ) ( ( F ` k ) - ( X / 2 ) ) <_ ( limsup ` F ) ) |
85 |
84
|
3exp |
|- ( ph -> ( j e. Z -> ( sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) <_ ( inf ( ran ( j e. Z |-> sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) ) , RR* , < ) +e ( X / 2 ) ) -> A. k e. ( ZZ>= ` j ) ( ( F ` k ) - ( X / 2 ) ) <_ ( limsup ` F ) ) ) ) |
86 |
6 85
|
reximdai |
|- ( ph -> ( E. j e. Z sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) <_ ( inf ( ran ( j e. Z |-> sup ( ran ( F |` ( ZZ>= ` j ) ) , RR* , < ) ) , RR* , < ) +e ( X / 2 ) ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) - ( X / 2 ) ) <_ ( limsup ` F ) ) ) |
87 |
53 86
|
mpd |
|- ( ph -> E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) - ( X / 2 ) ) <_ ( limsup ` F ) ) |
88 |
|
simpll |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ph ) |
89 |
3
|
ffvelrnda |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
90 |
67
|
adantr |
|- ( ( ph /\ k e. Z ) -> X e. RR ) |
91 |
89 90
|
resubcld |
|- ( ( ph /\ k e. Z ) -> ( ( F ` k ) - X ) e. RR ) |
92 |
91
|
adantr |
|- ( ( ( ph /\ k e. Z ) /\ ( ( F ` k ) - ( X / 2 ) ) <_ ( limsup ` F ) ) -> ( ( F ` k ) - X ) e. RR ) |
93 |
68
|
adantr |
|- ( ( ph /\ k e. Z ) -> ( X / 2 ) e. RR ) |
94 |
89 93
|
resubcld |
|- ( ( ph /\ k e. Z ) -> ( ( F ` k ) - ( X / 2 ) ) e. RR ) |
95 |
94
|
adantr |
|- ( ( ( ph /\ k e. Z ) /\ ( ( F ` k ) - ( X / 2 ) ) <_ ( limsup ` F ) ) -> ( ( F ` k ) - ( X / 2 ) ) e. RR ) |
96 |
4
|
ad2antrr |
|- ( ( ( ph /\ k e. Z ) /\ ( ( F ` k ) - ( X / 2 ) ) <_ ( limsup ` F ) ) -> ( limsup ` F ) e. RR ) |
97 |
5
|
rphalfltd |
|- ( ph -> ( X / 2 ) < X ) |
98 |
97
|
adantr |
|- ( ( ph /\ k e. Z ) -> ( X / 2 ) < X ) |
99 |
93 90 89 98
|
ltsub2dd |
|- ( ( ph /\ k e. Z ) -> ( ( F ` k ) - X ) < ( ( F ` k ) - ( X / 2 ) ) ) |
100 |
99
|
adantr |
|- ( ( ( ph /\ k e. Z ) /\ ( ( F ` k ) - ( X / 2 ) ) <_ ( limsup ` F ) ) -> ( ( F ` k ) - X ) < ( ( F ` k ) - ( X / 2 ) ) ) |
101 |
|
simpr |
|- ( ( ( ph /\ k e. Z ) /\ ( ( F ` k ) - ( X / 2 ) ) <_ ( limsup ` F ) ) -> ( ( F ` k ) - ( X / 2 ) ) <_ ( limsup ` F ) ) |
102 |
92 95 96 100 101
|
ltletrd |
|- ( ( ( ph /\ k e. Z ) /\ ( ( F ` k ) - ( X / 2 ) ) <_ ( limsup ` F ) ) -> ( ( F ` k ) - X ) < ( limsup ` F ) ) |
103 |
102
|
ex |
|- ( ( ph /\ k e. Z ) -> ( ( ( F ` k ) - ( X / 2 ) ) <_ ( limsup ` F ) -> ( ( F ` k ) - X ) < ( limsup ` F ) ) ) |
104 |
88 23 103
|
syl2anc |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( ( ( F ` k ) - ( X / 2 ) ) <_ ( limsup ` F ) -> ( ( F ` k ) - X ) < ( limsup ` F ) ) ) |
105 |
104
|
ralimdva |
|- ( ( ph /\ j e. Z ) -> ( A. k e. ( ZZ>= ` j ) ( ( F ` k ) - ( X / 2 ) ) <_ ( limsup ` F ) -> A. k e. ( ZZ>= ` j ) ( ( F ` k ) - X ) < ( limsup ` F ) ) ) |
106 |
105
|
reximdva |
|- ( ph -> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) - ( X / 2 ) ) <_ ( limsup ` F ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) - X ) < ( limsup ` F ) ) ) |
107 |
87 106
|
mpd |
|- ( ph -> E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) - X ) < ( limsup ` F ) ) |