Metamath Proof Explorer


Theorem limsupgtlem

Description: For any positive real, the superior limit of F is larger than any of its values at large enough arguments, up to that positive real. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses limsupgtlem.m φ M
limsupgtlem.z Z = M
limsupgtlem.f φ F : Z
limsupgtlem.r φ lim sup F
limsupgtlem.x φ X +
Assertion limsupgtlem φ j Z k j F k X < lim sup F

Proof

Step Hyp Ref Expression
1 limsupgtlem.m φ M
2 limsupgtlem.z Z = M
3 limsupgtlem.f φ F : Z
4 limsupgtlem.r φ lim sup F
5 limsupgtlem.x φ X +
6 nfv j φ
7 1 2 uzn0d φ Z
8 rnresss ran F j ran F
9 8 a1i φ ran F j ran F
10 3 frexr φ F : Z *
11 10 frnd φ ran F *
12 9 11 sstrd φ ran F j *
13 12 supxrcld φ sup ran F j * < *
14 13 adantr φ j Z sup ran F j * < *
15 nfcv _ k F
16 15 1 2 3 limsupreuz φ lim sup F x j Z k j x F k x k Z F k x
17 4 16 mpbid φ x j Z k j x F k x k Z F k x
18 17 simpld φ x j Z k j x F k
19 rexr x x *
20 19 ad4antlr φ x j Z k j x F k x *
21 3 ad2antrr φ j Z k j F : Z
22 2 uztrn2 j Z k j k Z
23 22 adantll φ j Z k j k Z
24 21 23 ffvelrnd φ j Z k j F k
25 24 rexrd φ j Z k j F k *
26 25 3impa φ j Z k j F k *
27 26 ad5ant134 φ x j Z k j x F k F k *
28 13 ad4antr φ x j Z k j x F k sup ran F j * < *
29 simpr φ x j Z k j x F k x F k
30 12 ad2antrr φ j Z k j ran F j *
31 fvres k j F j k = F k
32 31 eqcomd k j F k = F j k
33 32 adantl φ j Z k j F k = F j k
34 3 ffnd φ F Fn Z
35 34 adantr φ j Z F Fn Z
36 23 ssd φ j Z j Z
37 fnssres F Fn Z j Z F j Fn j
38 35 36 37 syl2anc φ j Z F j Fn j
39 38 adantr φ j Z k j F j Fn j
40 simpr φ j Z k j k j
41 39 40 fnfvelrnd φ j Z k j F j k ran F j
42 33 41 eqeltrd φ j Z k j F k ran F j
43 eqid sup ran F j * < = sup ran F j * <
44 30 42 43 supxrubd φ j Z k j F k sup ran F j * <
45 44 3impa φ j Z k j F k sup ran F j * <
46 45 ad5ant134 φ x j Z k j x F k F k sup ran F j * <
47 20 27 28 29 46 xrletrd φ x j Z k j x F k x sup ran F j * <
48 47 rexlimdva2 φ x j Z k j x F k x sup ran F j * <
49 48 ralimdva φ x j Z k j x F k j Z x sup ran F j * <
50 49 reximdva φ x j Z k j x F k x j Z x sup ran F j * <
51 18 50 mpd φ x j Z x sup ran F j * <
52 5 rphalfcld φ X 2 +
53 6 7 14 51 52 infrpgernmpt φ j Z sup ran F j * < sup ran j Z sup ran F j * < * < + 𝑒 X 2
54 simp3 φ j Z sup ran F j * < sup ran j Z sup ran F j * < * < + 𝑒 X 2 sup ran F j * < sup ran j Z sup ran F j * < * < + 𝑒 X 2
55 1 2 10 limsupvaluz φ lim sup F = sup ran j Z sup ran F j * < * <
56 55 eqcomd φ sup ran j Z sup ran F j * < * < = lim sup F
57 56 oveq1d φ sup ran j Z sup ran F j * < * < + 𝑒 X 2 = lim sup F + 𝑒 X 2
58 57 3ad2ant1 φ j Z sup ran F j * < sup ran j Z sup ran F j * < * < + 𝑒 X 2 sup ran j Z sup ran F j * < * < + 𝑒 X 2 = lim sup F + 𝑒 X 2
59 54 58 breqtrd φ j Z sup ran F j * < sup ran j Z sup ran F j * < * < + 𝑒 X 2 sup ran F j * < lim sup F + 𝑒 X 2
60 25 3adantl3 φ j Z sup ran F j * < lim sup F + 𝑒 X 2 k j F k *
61 simpl1 φ j Z sup ran F j * < lim sup F + 𝑒 X 2 k j φ
62 61 13 syl φ j Z sup ran F j * < lim sup F + 𝑒 X 2 k j sup ran F j * < *
63 2 fvexi Z V
64 63 a1i φ Z V
65 3 64 fexd φ F V
66 65 limsupcld φ lim sup F *
67 5 rpred φ X
68 67 rehalfcld φ X 2
69 68 rexrd φ X 2 *
70 66 69 xaddcld φ lim sup F + 𝑒 X 2 *
71 61 70 syl φ j Z sup ran F j * < lim sup F + 𝑒 X 2 k j lim sup F + 𝑒 X 2 *
72 44 3adantl3 φ j Z sup ran F j * < lim sup F + 𝑒 X 2 k j F k sup ran F j * <
73 simpl3 φ j Z sup ran F j * < lim sup F + 𝑒 X 2 k j sup ran F j * < lim sup F + 𝑒 X 2
74 60 62 71 72 73 xrletrd φ j Z sup ran F j * < lim sup F + 𝑒 X 2 k j F k lim sup F + 𝑒 X 2
75 4 68 rexaddd φ lim sup F + 𝑒 X 2 = lim sup F + X 2
76 61 75 syl φ j Z sup ran F j * < lim sup F + 𝑒 X 2 k j lim sup F + 𝑒 X 2 = lim sup F + X 2
77 74 76 breqtrd φ j Z sup ran F j * < lim sup F + 𝑒 X 2 k j F k lim sup F + X 2
78 68 ad2antrr φ j Z k j X 2
79 4 ad2antrr φ j Z k j lim sup F
80 24 78 79 lesubaddd φ j Z k j F k X 2 lim sup F F k lim sup F + X 2
81 80 3adantl3 φ j Z sup ran F j * < lim sup F + 𝑒 X 2 k j F k X 2 lim sup F F k lim sup F + X 2
82 77 81 mpbird φ j Z sup ran F j * < lim sup F + 𝑒 X 2 k j F k X 2 lim sup F
83 82 ralrimiva φ j Z sup ran F j * < lim sup F + 𝑒 X 2 k j F k X 2 lim sup F
84 59 83 syld3an3 φ j Z sup ran F j * < sup ran j Z sup ran F j * < * < + 𝑒 X 2 k j F k X 2 lim sup F
85 84 3exp φ j Z sup ran F j * < sup ran j Z sup ran F j * < * < + 𝑒 X 2 k j F k X 2 lim sup F
86 6 85 reximdai φ j Z sup ran F j * < sup ran j Z sup ran F j * < * < + 𝑒 X 2 j Z k j F k X 2 lim sup F
87 53 86 mpd φ j Z k j F k X 2 lim sup F
88 simpll φ j Z k j φ
89 3 ffvelrnda φ k Z F k
90 67 adantr φ k Z X
91 89 90 resubcld φ k Z F k X
92 91 adantr φ k Z F k X 2 lim sup F F k X
93 68 adantr φ k Z X 2
94 89 93 resubcld φ k Z F k X 2
95 94 adantr φ k Z F k X 2 lim sup F F k X 2
96 4 ad2antrr φ k Z F k X 2 lim sup F lim sup F
97 5 rphalfltd φ X 2 < X
98 97 adantr φ k Z X 2 < X
99 93 90 89 98 ltsub2dd φ k Z F k X < F k X 2
100 99 adantr φ k Z F k X 2 lim sup F F k X < F k X 2
101 simpr φ k Z F k X 2 lim sup F F k X 2 lim sup F
102 92 95 96 100 101 ltletrd φ k Z F k X 2 lim sup F F k X < lim sup F
103 102 ex φ k Z F k X 2 lim sup F F k X < lim sup F
104 88 23 103 syl2anc φ j Z k j F k X 2 lim sup F F k X < lim sup F
105 104 ralimdva φ j Z k j F k X 2 lim sup F k j F k X < lim sup F
106 105 reximdva φ j Z k j F k X 2 lim sup F j Z k j F k X < lim sup F
107 87 106 mpd φ j Z k j F k X < lim sup F