| Step |
Hyp |
Ref |
Expression |
| 1 |
|
liminfresre.1 |
|- ( ph -> F e. V ) |
| 2 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
| 3 |
2
|
resabs1i |
|- ( ( F |` RR ) |` ( 0 [,) +oo ) ) = ( F |` ( 0 [,) +oo ) ) |
| 4 |
3
|
fveq2i |
|- ( liminf ` ( ( F |` RR ) |` ( 0 [,) +oo ) ) ) = ( liminf ` ( F |` ( 0 [,) +oo ) ) ) |
| 5 |
4
|
a1i |
|- ( ph -> ( liminf ` ( ( F |` RR ) |` ( 0 [,) +oo ) ) ) = ( liminf ` ( F |` ( 0 [,) +oo ) ) ) ) |
| 6 |
|
0red |
|- ( ph -> 0 e. RR ) |
| 7 |
|
eqid |
|- ( 0 [,) +oo ) = ( 0 [,) +oo ) |
| 8 |
1
|
resexd |
|- ( ph -> ( F |` RR ) e. _V ) |
| 9 |
6 7 8
|
liminfresico |
|- ( ph -> ( liminf ` ( ( F |` RR ) |` ( 0 [,) +oo ) ) ) = ( liminf ` ( F |` RR ) ) ) |
| 10 |
6 7 1
|
liminfresico |
|- ( ph -> ( liminf ` ( F |` ( 0 [,) +oo ) ) ) = ( liminf ` F ) ) |
| 11 |
5 9 10
|
3eqtr3d |
|- ( ph -> ( liminf ` ( F |` RR ) ) = ( liminf ` F ) ) |