Metamath Proof Explorer


Theorem liminfresre

Description: The inferior limit of a function only depends on the real part of its domain. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypothesis liminfresre.1 φ F V
Assertion liminfresre φ lim inf F = lim inf F

Proof

Step Hyp Ref Expression
1 liminfresre.1 φ F V
2 rge0ssre 0 +∞
3 2 resabs1i F 0 +∞ = F 0 +∞
4 3 fveq2i lim inf F 0 +∞ = lim inf F 0 +∞
5 4 a1i φ lim inf F 0 +∞ = lim inf F 0 +∞
6 0red φ 0
7 eqid 0 +∞ = 0 +∞
8 1 resexd φ F V
9 6 7 8 liminfresico φ lim inf F 0 +∞ = lim inf F
10 6 7 1 liminfresico φ lim inf F 0 +∞ = lim inf F
11 5 9 10 3eqtr3d φ lim inf F = lim inf F