Step |
Hyp |
Ref |
Expression |
1 |
|
liminfresre.1 |
⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) |
2 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
3 |
2
|
resabs1i |
⊢ ( ( 𝐹 ↾ ℝ ) ↾ ( 0 [,) +∞ ) ) = ( 𝐹 ↾ ( 0 [,) +∞ ) ) |
4 |
3
|
fveq2i |
⊢ ( lim inf ‘ ( ( 𝐹 ↾ ℝ ) ↾ ( 0 [,) +∞ ) ) ) = ( lim inf ‘ ( 𝐹 ↾ ( 0 [,) +∞ ) ) ) |
5 |
4
|
a1i |
⊢ ( 𝜑 → ( lim inf ‘ ( ( 𝐹 ↾ ℝ ) ↾ ( 0 [,) +∞ ) ) ) = ( lim inf ‘ ( 𝐹 ↾ ( 0 [,) +∞ ) ) ) ) |
6 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
7 |
|
eqid |
⊢ ( 0 [,) +∞ ) = ( 0 [,) +∞ ) |
8 |
1
|
resexd |
⊢ ( 𝜑 → ( 𝐹 ↾ ℝ ) ∈ V ) |
9 |
6 7 8
|
liminfresico |
⊢ ( 𝜑 → ( lim inf ‘ ( ( 𝐹 ↾ ℝ ) ↾ ( 0 [,) +∞ ) ) ) = ( lim inf ‘ ( 𝐹 ↾ ℝ ) ) ) |
10 |
6 7 1
|
liminfresico |
⊢ ( 𝜑 → ( lim inf ‘ ( 𝐹 ↾ ( 0 [,) +∞ ) ) ) = ( lim inf ‘ 𝐹 ) ) |
11 |
5 9 10
|
3eqtr3d |
⊢ ( 𝜑 → ( lim inf ‘ ( 𝐹 ↾ ℝ ) ) = ( lim inf ‘ 𝐹 ) ) |