| Step |
Hyp |
Ref |
Expression |
| 1 |
|
liminfresico.1 |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 2 |
|
liminfresico.2 |
⊢ 𝑍 = ( 𝑀 [,) +∞ ) |
| 3 |
|
liminfresico.3 |
⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) |
| 4 |
1
|
rexrd |
⊢ ( 𝜑 → 𝑀 ∈ ℝ* ) |
| 5 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑦 ∈ ( 𝑘 [,) +∞ ) ) → 𝑀 ∈ ℝ* ) |
| 6 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 7 |
6
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑦 ∈ ( 𝑘 [,) +∞ ) ) → +∞ ∈ ℝ* ) |
| 8 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
| 9 |
6
|
a1i |
⊢ ( 𝜑 → +∞ ∈ ℝ* ) |
| 10 |
|
icossre |
⊢ ( ( 𝑀 ∈ ℝ ∧ +∞ ∈ ℝ* ) → ( 𝑀 [,) +∞ ) ⊆ ℝ ) |
| 11 |
1 9 10
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 [,) +∞ ) ⊆ ℝ ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑀 [,) +∞ ) ⊆ ℝ ) |
| 13 |
2
|
eleq2i |
⊢ ( 𝑘 ∈ 𝑍 ↔ 𝑘 ∈ ( 𝑀 [,) +∞ ) ) |
| 14 |
13
|
biimpi |
⊢ ( 𝑘 ∈ 𝑍 → 𝑘 ∈ ( 𝑀 [,) +∞ ) ) |
| 15 |
14
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑘 ∈ ( 𝑀 [,) +∞ ) ) |
| 16 |
12 15
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑘 ∈ ℝ ) |
| 17 |
16
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑦 ∈ ( 𝑘 [,) +∞ ) ) → 𝑘 ∈ ℝ ) |
| 18 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑦 ∈ ( 𝑘 [,) +∞ ) ) → 𝑦 ∈ ( 𝑘 [,) +∞ ) ) |
| 19 |
|
elicore |
⊢ ( ( 𝑘 ∈ ℝ ∧ 𝑦 ∈ ( 𝑘 [,) +∞ ) ) → 𝑦 ∈ ℝ ) |
| 20 |
17 18 19
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑦 ∈ ( 𝑘 [,) +∞ ) ) → 𝑦 ∈ ℝ ) |
| 21 |
8 20
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑦 ∈ ( 𝑘 [,) +∞ ) ) → 𝑦 ∈ ℝ* ) |
| 22 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑦 ∈ ( 𝑘 [,) +∞ ) ) → 𝑀 ∈ ℝ ) |
| 23 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑀 ∈ ℝ* ) |
| 24 |
6
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → +∞ ∈ ℝ* ) |
| 25 |
23 24 15
|
icogelbd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑀 ≤ 𝑘 ) |
| 26 |
25
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑦 ∈ ( 𝑘 [,) +∞ ) ) → 𝑀 ≤ 𝑘 ) |
| 27 |
8 17
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑦 ∈ ( 𝑘 [,) +∞ ) ) → 𝑘 ∈ ℝ* ) |
| 28 |
27 7 18
|
icogelbd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑦 ∈ ( 𝑘 [,) +∞ ) ) → 𝑘 ≤ 𝑦 ) |
| 29 |
22 17 20 26 28
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑦 ∈ ( 𝑘 [,) +∞ ) ) → 𝑀 ≤ 𝑦 ) |
| 30 |
20
|
ltpnfd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑦 ∈ ( 𝑘 [,) +∞ ) ) → 𝑦 < +∞ ) |
| 31 |
5 7 21 29 30
|
elicod |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑦 ∈ ( 𝑘 [,) +∞ ) ) → 𝑦 ∈ ( 𝑀 [,) +∞ ) ) |
| 32 |
31 2
|
eleqtrrdi |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑦 ∈ ( 𝑘 [,) +∞ ) ) → 𝑦 ∈ 𝑍 ) |
| 33 |
32
|
ssd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑘 [,) +∞ ) ⊆ 𝑍 ) |
| 34 |
|
resima2 |
⊢ ( ( 𝑘 [,) +∞ ) ⊆ 𝑍 → ( ( 𝐹 ↾ 𝑍 ) “ ( 𝑘 [,) +∞ ) ) = ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ) |
| 35 |
33 34
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝐹 ↾ 𝑍 ) “ ( 𝑘 [,) +∞ ) ) = ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ) |
| 36 |
35
|
ineq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( ( 𝐹 ↾ 𝑍 ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) = ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ) |
| 37 |
36
|
infeq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → inf ( ( ( ( 𝐹 ↾ 𝑍 ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) = inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
| 38 |
37
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ inf ( ( ( ( 𝐹 ↾ 𝑍 ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ( 𝑘 ∈ 𝑍 ↦ inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ) |
| 39 |
38
|
rneqd |
⊢ ( 𝜑 → ran ( 𝑘 ∈ 𝑍 ↦ inf ( ( ( ( 𝐹 ↾ 𝑍 ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ran ( 𝑘 ∈ 𝑍 ↦ inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ) |
| 40 |
2 11
|
eqsstrid |
⊢ ( 𝜑 → 𝑍 ⊆ ℝ ) |
| 41 |
40
|
mptimass |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ℝ ↦ inf ( ( ( ( 𝐹 ↾ 𝑍 ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) “ 𝑍 ) = ran ( 𝑘 ∈ 𝑍 ↦ inf ( ( ( ( 𝐹 ↾ 𝑍 ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ) |
| 42 |
40
|
mptimass |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) “ 𝑍 ) = ran ( 𝑘 ∈ 𝑍 ↦ inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ) |
| 43 |
39 41 42
|
3eqtr4d |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ℝ ↦ inf ( ( ( ( 𝐹 ↾ 𝑍 ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) “ 𝑍 ) = ( ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) “ 𝑍 ) ) |
| 44 |
43
|
supeq1d |
⊢ ( 𝜑 → sup ( ( ( 𝑘 ∈ ℝ ↦ inf ( ( ( ( 𝐹 ↾ 𝑍 ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) “ 𝑍 ) , ℝ* , < ) = sup ( ( ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) “ 𝑍 ) , ℝ* , < ) ) |
| 45 |
|
eqid |
⊢ ( 𝑘 ∈ ℝ ↦ inf ( ( ( ( 𝐹 ↾ 𝑍 ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ( 𝑘 ∈ ℝ ↦ inf ( ( ( ( 𝐹 ↾ 𝑍 ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
| 46 |
3
|
resexd |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝑍 ) ∈ V ) |
| 47 |
2
|
supeq1i |
⊢ sup ( 𝑍 , ℝ* , < ) = sup ( ( 𝑀 [,) +∞ ) , ℝ* , < ) |
| 48 |
47
|
a1i |
⊢ ( 𝜑 → sup ( 𝑍 , ℝ* , < ) = sup ( ( 𝑀 [,) +∞ ) , ℝ* , < ) ) |
| 49 |
1
|
renepnfd |
⊢ ( 𝜑 → 𝑀 ≠ +∞ ) |
| 50 |
|
icopnfsup |
⊢ ( ( 𝑀 ∈ ℝ* ∧ 𝑀 ≠ +∞ ) → sup ( ( 𝑀 [,) +∞ ) , ℝ* , < ) = +∞ ) |
| 51 |
4 49 50
|
syl2anc |
⊢ ( 𝜑 → sup ( ( 𝑀 [,) +∞ ) , ℝ* , < ) = +∞ ) |
| 52 |
48 51
|
eqtrd |
⊢ ( 𝜑 → sup ( 𝑍 , ℝ* , < ) = +∞ ) |
| 53 |
45 46 40 52
|
liminfval2 |
⊢ ( 𝜑 → ( lim inf ‘ ( 𝐹 ↾ 𝑍 ) ) = sup ( ( ( 𝑘 ∈ ℝ ↦ inf ( ( ( ( 𝐹 ↾ 𝑍 ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) “ 𝑍 ) , ℝ* , < ) ) |
| 54 |
|
eqid |
⊢ ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
| 55 |
54 3 40 52
|
liminfval2 |
⊢ ( 𝜑 → ( lim inf ‘ 𝐹 ) = sup ( ( ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) “ 𝑍 ) , ℝ* , < ) ) |
| 56 |
44 53 55
|
3eqtr4d |
⊢ ( 𝜑 → ( lim inf ‘ ( 𝐹 ↾ 𝑍 ) ) = ( lim inf ‘ 𝐹 ) ) |