Metamath Proof Explorer


Theorem liminfresico

Description: The inferior limit doesn't change when a function is restricted to an upperset of reals. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses liminfresico.1 ( 𝜑𝑀 ∈ ℝ )
liminfresico.2 𝑍 = ( 𝑀 [,) +∞ )
liminfresico.3 ( 𝜑𝐹𝑉 )
Assertion liminfresico ( 𝜑 → ( lim inf ‘ ( 𝐹𝑍 ) ) = ( lim inf ‘ 𝐹 ) )

Proof

Step Hyp Ref Expression
1 liminfresico.1 ( 𝜑𝑀 ∈ ℝ )
2 liminfresico.2 𝑍 = ( 𝑀 [,) +∞ )
3 liminfresico.3 ( 𝜑𝐹𝑉 )
4 1 rexrd ( 𝜑𝑀 ∈ ℝ* )
5 4 ad2antrr ( ( ( 𝜑𝑘𝑍 ) ∧ 𝑦 ∈ ( 𝑘 [,) +∞ ) ) → 𝑀 ∈ ℝ* )
6 pnfxr +∞ ∈ ℝ*
7 6 a1i ( ( ( 𝜑𝑘𝑍 ) ∧ 𝑦 ∈ ( 𝑘 [,) +∞ ) ) → +∞ ∈ ℝ* )
8 ressxr ℝ ⊆ ℝ*
9 6 a1i ( 𝜑 → +∞ ∈ ℝ* )
10 icossre ( ( 𝑀 ∈ ℝ ∧ +∞ ∈ ℝ* ) → ( 𝑀 [,) +∞ ) ⊆ ℝ )
11 1 9 10 syl2anc ( 𝜑 → ( 𝑀 [,) +∞ ) ⊆ ℝ )
12 11 adantr ( ( 𝜑𝑘𝑍 ) → ( 𝑀 [,) +∞ ) ⊆ ℝ )
13 2 eleq2i ( 𝑘𝑍𝑘 ∈ ( 𝑀 [,) +∞ ) )
14 13 biimpi ( 𝑘𝑍𝑘 ∈ ( 𝑀 [,) +∞ ) )
15 14 adantl ( ( 𝜑𝑘𝑍 ) → 𝑘 ∈ ( 𝑀 [,) +∞ ) )
16 12 15 sseldd ( ( 𝜑𝑘𝑍 ) → 𝑘 ∈ ℝ )
17 16 adantr ( ( ( 𝜑𝑘𝑍 ) ∧ 𝑦 ∈ ( 𝑘 [,) +∞ ) ) → 𝑘 ∈ ℝ )
18 simpr ( ( ( 𝜑𝑘𝑍 ) ∧ 𝑦 ∈ ( 𝑘 [,) +∞ ) ) → 𝑦 ∈ ( 𝑘 [,) +∞ ) )
19 elicore ( ( 𝑘 ∈ ℝ ∧ 𝑦 ∈ ( 𝑘 [,) +∞ ) ) → 𝑦 ∈ ℝ )
20 17 18 19 syl2anc ( ( ( 𝜑𝑘𝑍 ) ∧ 𝑦 ∈ ( 𝑘 [,) +∞ ) ) → 𝑦 ∈ ℝ )
21 8 20 sseldi ( ( ( 𝜑𝑘𝑍 ) ∧ 𝑦 ∈ ( 𝑘 [,) +∞ ) ) → 𝑦 ∈ ℝ* )
22 1 ad2antrr ( ( ( 𝜑𝑘𝑍 ) ∧ 𝑦 ∈ ( 𝑘 [,) +∞ ) ) → 𝑀 ∈ ℝ )
23 4 adantr ( ( 𝜑𝑘𝑍 ) → 𝑀 ∈ ℝ* )
24 6 a1i ( ( 𝜑𝑘𝑍 ) → +∞ ∈ ℝ* )
25 23 24 15 icogelbd ( ( 𝜑𝑘𝑍 ) → 𝑀𝑘 )
26 25 adantr ( ( ( 𝜑𝑘𝑍 ) ∧ 𝑦 ∈ ( 𝑘 [,) +∞ ) ) → 𝑀𝑘 )
27 8 17 sseldi ( ( ( 𝜑𝑘𝑍 ) ∧ 𝑦 ∈ ( 𝑘 [,) +∞ ) ) → 𝑘 ∈ ℝ* )
28 27 7 18 icogelbd ( ( ( 𝜑𝑘𝑍 ) ∧ 𝑦 ∈ ( 𝑘 [,) +∞ ) ) → 𝑘𝑦 )
29 22 17 20 26 28 letrd ( ( ( 𝜑𝑘𝑍 ) ∧ 𝑦 ∈ ( 𝑘 [,) +∞ ) ) → 𝑀𝑦 )
30 20 ltpnfd ( ( ( 𝜑𝑘𝑍 ) ∧ 𝑦 ∈ ( 𝑘 [,) +∞ ) ) → 𝑦 < +∞ )
31 5 7 21 29 30 elicod ( ( ( 𝜑𝑘𝑍 ) ∧ 𝑦 ∈ ( 𝑘 [,) +∞ ) ) → 𝑦 ∈ ( 𝑀 [,) +∞ ) )
32 31 2 eleqtrrdi ( ( ( 𝜑𝑘𝑍 ) ∧ 𝑦 ∈ ( 𝑘 [,) +∞ ) ) → 𝑦𝑍 )
33 32 ssd ( ( 𝜑𝑘𝑍 ) → ( 𝑘 [,) +∞ ) ⊆ 𝑍 )
34 resima2 ( ( 𝑘 [,) +∞ ) ⊆ 𝑍 → ( ( 𝐹𝑍 ) “ ( 𝑘 [,) +∞ ) ) = ( 𝐹 “ ( 𝑘 [,) +∞ ) ) )
35 33 34 syl ( ( 𝜑𝑘𝑍 ) → ( ( 𝐹𝑍 ) “ ( 𝑘 [,) +∞ ) ) = ( 𝐹 “ ( 𝑘 [,) +∞ ) ) )
36 35 ineq1d ( ( 𝜑𝑘𝑍 ) → ( ( ( 𝐹𝑍 ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) = ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) )
37 36 infeq1d ( ( 𝜑𝑘𝑍 ) → inf ( ( ( ( 𝐹𝑍 ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) = inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) )
38 37 mpteq2dva ( 𝜑 → ( 𝑘𝑍 ↦ inf ( ( ( ( 𝐹𝑍 ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ( 𝑘𝑍 ↦ inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) )
39 38 rneqd ( 𝜑 → ran ( 𝑘𝑍 ↦ inf ( ( ( ( 𝐹𝑍 ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ran ( 𝑘𝑍 ↦ inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) )
40 2 11 eqsstrid ( 𝜑𝑍 ⊆ ℝ )
41 40 mptima2 ( 𝜑 → ( ( 𝑘 ∈ ℝ ↦ inf ( ( ( ( 𝐹𝑍 ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) “ 𝑍 ) = ran ( 𝑘𝑍 ↦ inf ( ( ( ( 𝐹𝑍 ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) )
42 40 mptima2 ( 𝜑 → ( ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) “ 𝑍 ) = ran ( 𝑘𝑍 ↦ inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) )
43 39 41 42 3eqtr4d ( 𝜑 → ( ( 𝑘 ∈ ℝ ↦ inf ( ( ( ( 𝐹𝑍 ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) “ 𝑍 ) = ( ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) “ 𝑍 ) )
44 43 supeq1d ( 𝜑 → sup ( ( ( 𝑘 ∈ ℝ ↦ inf ( ( ( ( 𝐹𝑍 ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) “ 𝑍 ) , ℝ* , < ) = sup ( ( ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) “ 𝑍 ) , ℝ* , < ) )
45 eqid ( 𝑘 ∈ ℝ ↦ inf ( ( ( ( 𝐹𝑍 ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ( 𝑘 ∈ ℝ ↦ inf ( ( ( ( 𝐹𝑍 ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) )
46 3 resexd ( 𝜑 → ( 𝐹𝑍 ) ∈ V )
47 2 supeq1i sup ( 𝑍 , ℝ* , < ) = sup ( ( 𝑀 [,) +∞ ) , ℝ* , < )
48 47 a1i ( 𝜑 → sup ( 𝑍 , ℝ* , < ) = sup ( ( 𝑀 [,) +∞ ) , ℝ* , < ) )
49 1 renepnfd ( 𝜑𝑀 ≠ +∞ )
50 icopnfsup ( ( 𝑀 ∈ ℝ*𝑀 ≠ +∞ ) → sup ( ( 𝑀 [,) +∞ ) , ℝ* , < ) = +∞ )
51 4 49 50 syl2anc ( 𝜑 → sup ( ( 𝑀 [,) +∞ ) , ℝ* , < ) = +∞ )
52 48 51 eqtrd ( 𝜑 → sup ( 𝑍 , ℝ* , < ) = +∞ )
53 45 46 40 52 liminfval2 ( 𝜑 → ( lim inf ‘ ( 𝐹𝑍 ) ) = sup ( ( ( 𝑘 ∈ ℝ ↦ inf ( ( ( ( 𝐹𝑍 ) “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) “ 𝑍 ) , ℝ* , < ) )
54 eqid ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) )
55 54 3 40 52 liminfval2 ( 𝜑 → ( lim inf ‘ 𝐹 ) = sup ( ( ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) “ 𝑍 ) , ℝ* , < ) )
56 44 53 55 3eqtr4d ( 𝜑 → ( lim inf ‘ ( 𝐹𝑍 ) ) = ( lim inf ‘ 𝐹 ) )