Metamath Proof Explorer


Theorem liminfval2

Description: The superior limit, relativized to an unbounded set. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses liminfval2.1 𝐺 = ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) )
liminfval2.2 ( 𝜑𝐹𝑉 )
liminfval2.3 ( 𝜑𝐴 ⊆ ℝ )
liminfval2.4 ( 𝜑 → sup ( 𝐴 , ℝ* , < ) = +∞ )
Assertion liminfval2 ( 𝜑 → ( lim inf ‘ 𝐹 ) = sup ( ( 𝐺𝐴 ) , ℝ* , < ) )

Proof

Step Hyp Ref Expression
1 liminfval2.1 𝐺 = ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) )
2 liminfval2.2 ( 𝜑𝐹𝑉 )
3 liminfval2.3 ( 𝜑𝐴 ⊆ ℝ )
4 liminfval2.4 ( 𝜑 → sup ( 𝐴 , ℝ* , < ) = +∞ )
5 oveq1 ( 𝑘 = 𝑗 → ( 𝑘 [,) +∞ ) = ( 𝑗 [,) +∞ ) )
6 5 imaeq2d ( 𝑘 = 𝑗 → ( 𝐹 “ ( 𝑘 [,) +∞ ) ) = ( 𝐹 “ ( 𝑗 [,) +∞ ) ) )
7 6 ineq1d ( 𝑘 = 𝑗 → ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) = ( ( 𝐹 “ ( 𝑗 [,) +∞ ) ) ∩ ℝ* ) )
8 7 infeq1d ( 𝑘 = 𝑗 → inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) = inf ( ( ( 𝐹 “ ( 𝑗 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) )
9 8 cbvmptv ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ( 𝑗 ∈ ℝ ↦ inf ( ( ( 𝐹 “ ( 𝑗 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) )
10 1 9 eqtri 𝐺 = ( 𝑗 ∈ ℝ ↦ inf ( ( ( 𝐹 “ ( 𝑗 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) )
11 10 liminfval ( 𝐹𝑉 → ( lim inf ‘ 𝐹 ) = sup ( ran 𝐺 , ℝ* , < ) )
12 2 11 syl ( 𝜑 → ( lim inf ‘ 𝐹 ) = sup ( ran 𝐺 , ℝ* , < ) )
13 3 ssrexr ( 𝜑𝐴 ⊆ ℝ* )
14 supxrunb1 ( 𝐴 ⊆ ℝ* → ( ∀ 𝑛 ∈ ℝ ∃ 𝑥𝐴 𝑛𝑥 ↔ sup ( 𝐴 , ℝ* , < ) = +∞ ) )
15 13 14 syl ( 𝜑 → ( ∀ 𝑛 ∈ ℝ ∃ 𝑥𝐴 𝑛𝑥 ↔ sup ( 𝐴 , ℝ* , < ) = +∞ ) )
16 4 15 mpbird ( 𝜑 → ∀ 𝑛 ∈ ℝ ∃ 𝑥𝐴 𝑛𝑥 )
17 10 liminfgf 𝐺 : ℝ ⟶ ℝ*
18 17 ffvelrni ( 𝑛 ∈ ℝ → ( 𝐺𝑛 ) ∈ ℝ* )
19 18 ad2antlr ( ( ( 𝜑𝑛 ∈ ℝ ) ∧ ( 𝑥𝐴𝑛𝑥 ) ) → ( 𝐺𝑛 ) ∈ ℝ* )
20 simpll ( ( ( 𝜑𝑛 ∈ ℝ ) ∧ ( 𝑥𝐴𝑛𝑥 ) ) → 𝜑 )
21 simprl ( ( ( 𝜑𝑛 ∈ ℝ ) ∧ ( 𝑥𝐴𝑛𝑥 ) ) → 𝑥𝐴 )
22 3 sselda ( ( 𝜑𝑥𝐴 ) → 𝑥 ∈ ℝ )
23 17 ffvelrni ( 𝑥 ∈ ℝ → ( 𝐺𝑥 ) ∈ ℝ* )
24 22 23 syl ( ( 𝜑𝑥𝐴 ) → ( 𝐺𝑥 ) ∈ ℝ* )
25 20 21 24 syl2anc ( ( ( 𝜑𝑛 ∈ ℝ ) ∧ ( 𝑥𝐴𝑛𝑥 ) ) → ( 𝐺𝑥 ) ∈ ℝ* )
26 imassrn ( 𝐺𝐴 ) ⊆ ran 𝐺
27 frn ( 𝐺 : ℝ ⟶ ℝ* → ran 𝐺 ⊆ ℝ* )
28 17 27 ax-mp ran 𝐺 ⊆ ℝ*
29 26 28 sstri ( 𝐺𝐴 ) ⊆ ℝ*
30 supxrcl ( ( 𝐺𝐴 ) ⊆ ℝ* → sup ( ( 𝐺𝐴 ) , ℝ* , < ) ∈ ℝ* )
31 29 30 ax-mp sup ( ( 𝐺𝐴 ) , ℝ* , < ) ∈ ℝ*
32 31 a1i ( ( ( 𝜑𝑛 ∈ ℝ ) ∧ ( 𝑥𝐴𝑛𝑥 ) ) → sup ( ( 𝐺𝐴 ) , ℝ* , < ) ∈ ℝ* )
33 simplr ( ( ( 𝜑𝑛 ∈ ℝ ) ∧ ( 𝑥𝐴𝑛𝑥 ) ) → 𝑛 ∈ ℝ )
34 20 21 22 syl2anc ( ( ( 𝜑𝑛 ∈ ℝ ) ∧ ( 𝑥𝐴𝑛𝑥 ) ) → 𝑥 ∈ ℝ )
35 simprr ( ( ( 𝜑𝑛 ∈ ℝ ) ∧ ( 𝑥𝐴𝑛𝑥 ) ) → 𝑛𝑥 )
36 liminfgord ( ( 𝑛 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑛𝑥 ) → inf ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ≤ inf ( ( ( 𝐹 “ ( 𝑥 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) )
37 33 34 35 36 syl3anc ( ( ( 𝜑𝑛 ∈ ℝ ) ∧ ( 𝑥𝐴𝑛𝑥 ) ) → inf ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ≤ inf ( ( ( 𝐹 “ ( 𝑥 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) )
38 10 liminfgval ( 𝑛 ∈ ℝ → ( 𝐺𝑛 ) = inf ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) )
39 38 ad2antlr ( ( ( 𝜑𝑛 ∈ ℝ ) ∧ 𝑥𝐴 ) → ( 𝐺𝑛 ) = inf ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) )
40 10 liminfgval ( 𝑥 ∈ ℝ → ( 𝐺𝑥 ) = inf ( ( ( 𝐹 “ ( 𝑥 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) )
41 22 40 syl ( ( 𝜑𝑥𝐴 ) → ( 𝐺𝑥 ) = inf ( ( ( 𝐹 “ ( 𝑥 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) )
42 41 adantlr ( ( ( 𝜑𝑛 ∈ ℝ ) ∧ 𝑥𝐴 ) → ( 𝐺𝑥 ) = inf ( ( ( 𝐹 “ ( 𝑥 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) )
43 39 42 breq12d ( ( ( 𝜑𝑛 ∈ ℝ ) ∧ 𝑥𝐴 ) → ( ( 𝐺𝑛 ) ≤ ( 𝐺𝑥 ) ↔ inf ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ≤ inf ( ( ( 𝐹 “ ( 𝑥 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) )
44 43 adantrr ( ( ( 𝜑𝑛 ∈ ℝ ) ∧ ( 𝑥𝐴𝑛𝑥 ) ) → ( ( 𝐺𝑛 ) ≤ ( 𝐺𝑥 ) ↔ inf ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ≤ inf ( ( ( 𝐹 “ ( 𝑥 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) )
45 37 44 mpbird ( ( ( 𝜑𝑛 ∈ ℝ ) ∧ ( 𝑥𝐴𝑛𝑥 ) ) → ( 𝐺𝑛 ) ≤ ( 𝐺𝑥 ) )
46 29 a1i ( ( 𝜑𝑥𝐴 ) → ( 𝐺𝐴 ) ⊆ ℝ* )
47 nfv 𝑗 𝜑
48 inss2 ( ( 𝐹 “ ( 𝑗 [,) +∞ ) ) ∩ ℝ* ) ⊆ ℝ*
49 infxrcl ( ( ( 𝐹 “ ( 𝑗 [,) +∞ ) ) ∩ ℝ* ) ⊆ ℝ* → inf ( ( ( 𝐹 “ ( 𝑗 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ∈ ℝ* )
50 48 49 ax-mp inf ( ( ( 𝐹 “ ( 𝑗 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ∈ ℝ*
51 50 a1i ( ( 𝜑𝑗 ∈ ℝ ) → inf ( ( ( 𝐹 “ ( 𝑗 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ∈ ℝ* )
52 47 51 10 fnmptd ( 𝜑𝐺 Fn ℝ )
53 52 adantr ( ( 𝜑𝑥𝐴 ) → 𝐺 Fn ℝ )
54 simpr ( ( 𝜑𝑥𝐴 ) → 𝑥𝐴 )
55 53 22 54 fnfvimad ( ( 𝜑𝑥𝐴 ) → ( 𝐺𝑥 ) ∈ ( 𝐺𝐴 ) )
56 supxrub ( ( ( 𝐺𝐴 ) ⊆ ℝ* ∧ ( 𝐺𝑥 ) ∈ ( 𝐺𝐴 ) ) → ( 𝐺𝑥 ) ≤ sup ( ( 𝐺𝐴 ) , ℝ* , < ) )
57 46 55 56 syl2anc ( ( 𝜑𝑥𝐴 ) → ( 𝐺𝑥 ) ≤ sup ( ( 𝐺𝐴 ) , ℝ* , < ) )
58 20 21 57 syl2anc ( ( ( 𝜑𝑛 ∈ ℝ ) ∧ ( 𝑥𝐴𝑛𝑥 ) ) → ( 𝐺𝑥 ) ≤ sup ( ( 𝐺𝐴 ) , ℝ* , < ) )
59 19 25 32 45 58 xrletrd ( ( ( 𝜑𝑛 ∈ ℝ ) ∧ ( 𝑥𝐴𝑛𝑥 ) ) → ( 𝐺𝑛 ) ≤ sup ( ( 𝐺𝐴 ) , ℝ* , < ) )
60 59 rexlimdvaa ( ( 𝜑𝑛 ∈ ℝ ) → ( ∃ 𝑥𝐴 𝑛𝑥 → ( 𝐺𝑛 ) ≤ sup ( ( 𝐺𝐴 ) , ℝ* , < ) ) )
61 60 ralimdva ( 𝜑 → ( ∀ 𝑛 ∈ ℝ ∃ 𝑥𝐴 𝑛𝑥 → ∀ 𝑛 ∈ ℝ ( 𝐺𝑛 ) ≤ sup ( ( 𝐺𝐴 ) , ℝ* , < ) ) )
62 16 61 mpd ( 𝜑 → ∀ 𝑛 ∈ ℝ ( 𝐺𝑛 ) ≤ sup ( ( 𝐺𝐴 ) , ℝ* , < ) )
63 xrltso < Or ℝ*
64 63 infex inf ( ( ( 𝐹 “ ( 𝑗 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ∈ V
65 64 rgenw 𝑗 ∈ ℝ inf ( ( ( 𝐹 “ ( 𝑗 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ∈ V
66 10 fnmpt ( ∀ 𝑗 ∈ ℝ inf ( ( ( 𝐹 “ ( 𝑗 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ∈ V → 𝐺 Fn ℝ )
67 65 66 ax-mp 𝐺 Fn ℝ
68 breq1 ( 𝑥 = ( 𝐺𝑛 ) → ( 𝑥 ≤ sup ( ( 𝐺𝐴 ) , ℝ* , < ) ↔ ( 𝐺𝑛 ) ≤ sup ( ( 𝐺𝐴 ) , ℝ* , < ) ) )
69 68 ralrn ( 𝐺 Fn ℝ → ( ∀ 𝑥 ∈ ran 𝐺 𝑥 ≤ sup ( ( 𝐺𝐴 ) , ℝ* , < ) ↔ ∀ 𝑛 ∈ ℝ ( 𝐺𝑛 ) ≤ sup ( ( 𝐺𝐴 ) , ℝ* , < ) ) )
70 67 69 ax-mp ( ∀ 𝑥 ∈ ran 𝐺 𝑥 ≤ sup ( ( 𝐺𝐴 ) , ℝ* , < ) ↔ ∀ 𝑛 ∈ ℝ ( 𝐺𝑛 ) ≤ sup ( ( 𝐺𝐴 ) , ℝ* , < ) )
71 62 70 sylibr ( 𝜑 → ∀ 𝑥 ∈ ran 𝐺 𝑥 ≤ sup ( ( 𝐺𝐴 ) , ℝ* , < ) )
72 supxrleub ( ( ran 𝐺 ⊆ ℝ* ∧ sup ( ( 𝐺𝐴 ) , ℝ* , < ) ∈ ℝ* ) → ( sup ( ran 𝐺 , ℝ* , < ) ≤ sup ( ( 𝐺𝐴 ) , ℝ* , < ) ↔ ∀ 𝑥 ∈ ran 𝐺 𝑥 ≤ sup ( ( 𝐺𝐴 ) , ℝ* , < ) ) )
73 28 31 72 mp2an ( sup ( ran 𝐺 , ℝ* , < ) ≤ sup ( ( 𝐺𝐴 ) , ℝ* , < ) ↔ ∀ 𝑥 ∈ ran 𝐺 𝑥 ≤ sup ( ( 𝐺𝐴 ) , ℝ* , < ) )
74 71 73 sylibr ( 𝜑 → sup ( ran 𝐺 , ℝ* , < ) ≤ sup ( ( 𝐺𝐴 ) , ℝ* , < ) )
75 26 a1i ( 𝜑 → ( 𝐺𝐴 ) ⊆ ran 𝐺 )
76 28 a1i ( 𝜑 → ran 𝐺 ⊆ ℝ* )
77 supxrss ( ( ( 𝐺𝐴 ) ⊆ ran 𝐺 ∧ ran 𝐺 ⊆ ℝ* ) → sup ( ( 𝐺𝐴 ) , ℝ* , < ) ≤ sup ( ran 𝐺 , ℝ* , < ) )
78 75 76 77 syl2anc ( 𝜑 → sup ( ( 𝐺𝐴 ) , ℝ* , < ) ≤ sup ( ran 𝐺 , ℝ* , < ) )
79 supxrcl ( ran 𝐺 ⊆ ℝ* → sup ( ran 𝐺 , ℝ* , < ) ∈ ℝ* )
80 28 79 ax-mp sup ( ran 𝐺 , ℝ* , < ) ∈ ℝ*
81 xrletri3 ( ( sup ( ran 𝐺 , ℝ* , < ) ∈ ℝ* ∧ sup ( ( 𝐺𝐴 ) , ℝ* , < ) ∈ ℝ* ) → ( sup ( ran 𝐺 , ℝ* , < ) = sup ( ( 𝐺𝐴 ) , ℝ* , < ) ↔ ( sup ( ran 𝐺 , ℝ* , < ) ≤ sup ( ( 𝐺𝐴 ) , ℝ* , < ) ∧ sup ( ( 𝐺𝐴 ) , ℝ* , < ) ≤ sup ( ran 𝐺 , ℝ* , < ) ) ) )
82 80 31 81 mp2an ( sup ( ran 𝐺 , ℝ* , < ) = sup ( ( 𝐺𝐴 ) , ℝ* , < ) ↔ ( sup ( ran 𝐺 , ℝ* , < ) ≤ sup ( ( 𝐺𝐴 ) , ℝ* , < ) ∧ sup ( ( 𝐺𝐴 ) , ℝ* , < ) ≤ sup ( ran 𝐺 , ℝ* , < ) ) )
83 74 78 82 sylanbrc ( 𝜑 → sup ( ran 𝐺 , ℝ* , < ) = sup ( ( 𝐺𝐴 ) , ℝ* , < ) )
84 12 83 eqtrd ( 𝜑 → ( lim inf ‘ 𝐹 ) = sup ( ( 𝐺𝐴 ) , ℝ* , < ) )