Step |
Hyp |
Ref |
Expression |
1 |
|
liminfval2.1 |
⊢ 𝐺 = ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
2 |
|
liminfval2.2 |
⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) |
3 |
|
liminfval2.3 |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
4 |
|
liminfval2.4 |
⊢ ( 𝜑 → sup ( 𝐴 , ℝ* , < ) = +∞ ) |
5 |
|
oveq1 |
⊢ ( 𝑘 = 𝑗 → ( 𝑘 [,) +∞ ) = ( 𝑗 [,) +∞ ) ) |
6 |
5
|
imaeq2d |
⊢ ( 𝑘 = 𝑗 → ( 𝐹 “ ( 𝑘 [,) +∞ ) ) = ( 𝐹 “ ( 𝑗 [,) +∞ ) ) ) |
7 |
6
|
ineq1d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) = ( ( 𝐹 “ ( 𝑗 [,) +∞ ) ) ∩ ℝ* ) ) |
8 |
7
|
infeq1d |
⊢ ( 𝑘 = 𝑗 → inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) = inf ( ( ( 𝐹 “ ( 𝑗 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
9 |
8
|
cbvmptv |
⊢ ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ( 𝑗 ∈ ℝ ↦ inf ( ( ( 𝐹 “ ( 𝑗 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
10 |
1 9
|
eqtri |
⊢ 𝐺 = ( 𝑗 ∈ ℝ ↦ inf ( ( ( 𝐹 “ ( 𝑗 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
11 |
10
|
liminfval |
⊢ ( 𝐹 ∈ 𝑉 → ( lim inf ‘ 𝐹 ) = sup ( ran 𝐺 , ℝ* , < ) ) |
12 |
2 11
|
syl |
⊢ ( 𝜑 → ( lim inf ‘ 𝐹 ) = sup ( ran 𝐺 , ℝ* , < ) ) |
13 |
3
|
ssrexr |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ* ) |
14 |
|
supxrunb1 |
⊢ ( 𝐴 ⊆ ℝ* → ( ∀ 𝑛 ∈ ℝ ∃ 𝑥 ∈ 𝐴 𝑛 ≤ 𝑥 ↔ sup ( 𝐴 , ℝ* , < ) = +∞ ) ) |
15 |
13 14
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑛 ∈ ℝ ∃ 𝑥 ∈ 𝐴 𝑛 ≤ 𝑥 ↔ sup ( 𝐴 , ℝ* , < ) = +∞ ) ) |
16 |
4 15
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℝ ∃ 𝑥 ∈ 𝐴 𝑛 ≤ 𝑥 ) |
17 |
10
|
liminfgf |
⊢ 𝐺 : ℝ ⟶ ℝ* |
18 |
17
|
ffvelrni |
⊢ ( 𝑛 ∈ ℝ → ( 𝐺 ‘ 𝑛 ) ∈ ℝ* ) |
19 |
18
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑛 ≤ 𝑥 ) ) → ( 𝐺 ‘ 𝑛 ) ∈ ℝ* ) |
20 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑛 ≤ 𝑥 ) ) → 𝜑 ) |
21 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑛 ≤ 𝑥 ) ) → 𝑥 ∈ 𝐴 ) |
22 |
3
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ ) |
23 |
17
|
ffvelrni |
⊢ ( 𝑥 ∈ ℝ → ( 𝐺 ‘ 𝑥 ) ∈ ℝ* ) |
24 |
22 23
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) ∈ ℝ* ) |
25 |
20 21 24
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑛 ≤ 𝑥 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ℝ* ) |
26 |
|
imassrn |
⊢ ( 𝐺 “ 𝐴 ) ⊆ ran 𝐺 |
27 |
|
frn |
⊢ ( 𝐺 : ℝ ⟶ ℝ* → ran 𝐺 ⊆ ℝ* ) |
28 |
17 27
|
ax-mp |
⊢ ran 𝐺 ⊆ ℝ* |
29 |
26 28
|
sstri |
⊢ ( 𝐺 “ 𝐴 ) ⊆ ℝ* |
30 |
|
supxrcl |
⊢ ( ( 𝐺 “ 𝐴 ) ⊆ ℝ* → sup ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ∈ ℝ* ) |
31 |
29 30
|
ax-mp |
⊢ sup ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ∈ ℝ* |
32 |
31
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑛 ≤ 𝑥 ) ) → sup ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ∈ ℝ* ) |
33 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑛 ≤ 𝑥 ) ) → 𝑛 ∈ ℝ ) |
34 |
20 21 22
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑛 ≤ 𝑥 ) ) → 𝑥 ∈ ℝ ) |
35 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑛 ≤ 𝑥 ) ) → 𝑛 ≤ 𝑥 ) |
36 |
|
liminfgord |
⊢ ( ( 𝑛 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑛 ≤ 𝑥 ) → inf ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ≤ inf ( ( ( 𝐹 “ ( 𝑥 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
37 |
33 34 35 36
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑛 ≤ 𝑥 ) ) → inf ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ≤ inf ( ( ( 𝐹 “ ( 𝑥 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
38 |
10
|
liminfgval |
⊢ ( 𝑛 ∈ ℝ → ( 𝐺 ‘ 𝑛 ) = inf ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
39 |
38
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑛 ) = inf ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
40 |
10
|
liminfgval |
⊢ ( 𝑥 ∈ ℝ → ( 𝐺 ‘ 𝑥 ) = inf ( ( ( 𝐹 “ ( 𝑥 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
41 |
22 40
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) = inf ( ( ( 𝐹 “ ( 𝑥 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
42 |
41
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) = inf ( ( ( 𝐹 “ ( 𝑥 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
43 |
39 42
|
breq12d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑛 ) ≤ ( 𝐺 ‘ 𝑥 ) ↔ inf ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ≤ inf ( ( ( 𝐹 “ ( 𝑥 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ) |
44 |
43
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑛 ≤ 𝑥 ) ) → ( ( 𝐺 ‘ 𝑛 ) ≤ ( 𝐺 ‘ 𝑥 ) ↔ inf ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ≤ inf ( ( ( 𝐹 “ ( 𝑥 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ) |
45 |
37 44
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑛 ≤ 𝑥 ) ) → ( 𝐺 ‘ 𝑛 ) ≤ ( 𝐺 ‘ 𝑥 ) ) |
46 |
29
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 “ 𝐴 ) ⊆ ℝ* ) |
47 |
|
nfv |
⊢ Ⅎ 𝑗 𝜑 |
48 |
|
inss2 |
⊢ ( ( 𝐹 “ ( 𝑗 [,) +∞ ) ) ∩ ℝ* ) ⊆ ℝ* |
49 |
|
infxrcl |
⊢ ( ( ( 𝐹 “ ( 𝑗 [,) +∞ ) ) ∩ ℝ* ) ⊆ ℝ* → inf ( ( ( 𝐹 “ ( 𝑗 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ∈ ℝ* ) |
50 |
48 49
|
ax-mp |
⊢ inf ( ( ( 𝐹 “ ( 𝑗 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ∈ ℝ* |
51 |
50
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℝ ) → inf ( ( ( 𝐹 “ ( 𝑗 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ∈ ℝ* ) |
52 |
47 51 10
|
fnmptd |
⊢ ( 𝜑 → 𝐺 Fn ℝ ) |
53 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐺 Fn ℝ ) |
54 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
55 |
53 22 54
|
fnfvimad |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) ∈ ( 𝐺 “ 𝐴 ) ) |
56 |
|
supxrub |
⊢ ( ( ( 𝐺 “ 𝐴 ) ⊆ ℝ* ∧ ( 𝐺 ‘ 𝑥 ) ∈ ( 𝐺 “ 𝐴 ) ) → ( 𝐺 ‘ 𝑥 ) ≤ sup ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ) |
57 |
46 55 56
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) ≤ sup ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ) |
58 |
20 21 57
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑛 ≤ 𝑥 ) ) → ( 𝐺 ‘ 𝑥 ) ≤ sup ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ) |
59 |
19 25 32 45 58
|
xrletrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑛 ≤ 𝑥 ) ) → ( 𝐺 ‘ 𝑛 ) ≤ sup ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ) |
60 |
59
|
rexlimdvaa |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) → ( ∃ 𝑥 ∈ 𝐴 𝑛 ≤ 𝑥 → ( 𝐺 ‘ 𝑛 ) ≤ sup ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ) ) |
61 |
60
|
ralimdva |
⊢ ( 𝜑 → ( ∀ 𝑛 ∈ ℝ ∃ 𝑥 ∈ 𝐴 𝑛 ≤ 𝑥 → ∀ 𝑛 ∈ ℝ ( 𝐺 ‘ 𝑛 ) ≤ sup ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ) ) |
62 |
16 61
|
mpd |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℝ ( 𝐺 ‘ 𝑛 ) ≤ sup ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ) |
63 |
|
xrltso |
⊢ < Or ℝ* |
64 |
63
|
infex |
⊢ inf ( ( ( 𝐹 “ ( 𝑗 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ∈ V |
65 |
64
|
rgenw |
⊢ ∀ 𝑗 ∈ ℝ inf ( ( ( 𝐹 “ ( 𝑗 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ∈ V |
66 |
10
|
fnmpt |
⊢ ( ∀ 𝑗 ∈ ℝ inf ( ( ( 𝐹 “ ( 𝑗 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ∈ V → 𝐺 Fn ℝ ) |
67 |
65 66
|
ax-mp |
⊢ 𝐺 Fn ℝ |
68 |
|
breq1 |
⊢ ( 𝑥 = ( 𝐺 ‘ 𝑛 ) → ( 𝑥 ≤ sup ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ↔ ( 𝐺 ‘ 𝑛 ) ≤ sup ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ) ) |
69 |
68
|
ralrn |
⊢ ( 𝐺 Fn ℝ → ( ∀ 𝑥 ∈ ran 𝐺 𝑥 ≤ sup ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ↔ ∀ 𝑛 ∈ ℝ ( 𝐺 ‘ 𝑛 ) ≤ sup ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ) ) |
70 |
67 69
|
ax-mp |
⊢ ( ∀ 𝑥 ∈ ran 𝐺 𝑥 ≤ sup ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ↔ ∀ 𝑛 ∈ ℝ ( 𝐺 ‘ 𝑛 ) ≤ sup ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ) |
71 |
62 70
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ran 𝐺 𝑥 ≤ sup ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ) |
72 |
|
supxrleub |
⊢ ( ( ran 𝐺 ⊆ ℝ* ∧ sup ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ∈ ℝ* ) → ( sup ( ran 𝐺 , ℝ* , < ) ≤ sup ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ↔ ∀ 𝑥 ∈ ran 𝐺 𝑥 ≤ sup ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ) ) |
73 |
28 31 72
|
mp2an |
⊢ ( sup ( ran 𝐺 , ℝ* , < ) ≤ sup ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ↔ ∀ 𝑥 ∈ ran 𝐺 𝑥 ≤ sup ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ) |
74 |
71 73
|
sylibr |
⊢ ( 𝜑 → sup ( ran 𝐺 , ℝ* , < ) ≤ sup ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ) |
75 |
26
|
a1i |
⊢ ( 𝜑 → ( 𝐺 “ 𝐴 ) ⊆ ran 𝐺 ) |
76 |
28
|
a1i |
⊢ ( 𝜑 → ran 𝐺 ⊆ ℝ* ) |
77 |
|
supxrss |
⊢ ( ( ( 𝐺 “ 𝐴 ) ⊆ ran 𝐺 ∧ ran 𝐺 ⊆ ℝ* ) → sup ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ≤ sup ( ran 𝐺 , ℝ* , < ) ) |
78 |
75 76 77
|
syl2anc |
⊢ ( 𝜑 → sup ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ≤ sup ( ran 𝐺 , ℝ* , < ) ) |
79 |
|
supxrcl |
⊢ ( ran 𝐺 ⊆ ℝ* → sup ( ran 𝐺 , ℝ* , < ) ∈ ℝ* ) |
80 |
28 79
|
ax-mp |
⊢ sup ( ran 𝐺 , ℝ* , < ) ∈ ℝ* |
81 |
|
xrletri3 |
⊢ ( ( sup ( ran 𝐺 , ℝ* , < ) ∈ ℝ* ∧ sup ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ∈ ℝ* ) → ( sup ( ran 𝐺 , ℝ* , < ) = sup ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ↔ ( sup ( ran 𝐺 , ℝ* , < ) ≤ sup ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ∧ sup ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ≤ sup ( ran 𝐺 , ℝ* , < ) ) ) ) |
82 |
80 31 81
|
mp2an |
⊢ ( sup ( ran 𝐺 , ℝ* , < ) = sup ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ↔ ( sup ( ran 𝐺 , ℝ* , < ) ≤ sup ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ∧ sup ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ≤ sup ( ran 𝐺 , ℝ* , < ) ) ) |
83 |
74 78 82
|
sylanbrc |
⊢ ( 𝜑 → sup ( ran 𝐺 , ℝ* , < ) = sup ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ) |
84 |
12 83
|
eqtrd |
⊢ ( 𝜑 → ( lim inf ‘ 𝐹 ) = sup ( ( 𝐺 “ 𝐴 ) , ℝ* , < ) ) |