Step |
Hyp |
Ref |
Expression |
1 |
|
inss2 |
⊢ ( ( 𝐹 “ ( 𝐴 [,) +∞ ) ) ∩ ℝ* ) ⊆ ℝ* |
2 |
1
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑥 ∈ ( ( 𝐹 “ ( 𝐵 [,) +∞ ) ) ∩ ℝ* ) ) → ( ( 𝐹 “ ( 𝐴 [,) +∞ ) ) ∩ ℝ* ) ⊆ ℝ* ) |
3 |
|
rexr |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ* ) |
4 |
3
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ℝ* ) |
5 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ≤ 𝐵 ) |
6 |
|
df-ico |
⊢ [,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) |
7 |
|
xrletr |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝑤 ) → 𝐴 ≤ 𝑤 ) ) |
8 |
6 6 7
|
ixxss1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → ( 𝐵 [,) +∞ ) ⊆ ( 𝐴 [,) +∞ ) ) |
9 |
4 5 8
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( 𝐵 [,) +∞ ) ⊆ ( 𝐴 [,) +∞ ) ) |
10 |
|
imass2 |
⊢ ( ( 𝐵 [,) +∞ ) ⊆ ( 𝐴 [,) +∞ ) → ( 𝐹 “ ( 𝐵 [,) +∞ ) ) ⊆ ( 𝐹 “ ( 𝐴 [,) +∞ ) ) ) |
11 |
|
ssrin |
⊢ ( ( 𝐹 “ ( 𝐵 [,) +∞ ) ) ⊆ ( 𝐹 “ ( 𝐴 [,) +∞ ) ) → ( ( 𝐹 “ ( 𝐵 [,) +∞ ) ) ∩ ℝ* ) ⊆ ( ( 𝐹 “ ( 𝐴 [,) +∞ ) ) ∩ ℝ* ) ) |
12 |
9 10 11
|
3syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝐹 “ ( 𝐵 [,) +∞ ) ) ∩ ℝ* ) ⊆ ( ( 𝐹 “ ( 𝐴 [,) +∞ ) ) ∩ ℝ* ) ) |
13 |
12
|
sselda |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑥 ∈ ( ( 𝐹 “ ( 𝐵 [,) +∞ ) ) ∩ ℝ* ) ) → 𝑥 ∈ ( ( 𝐹 “ ( 𝐴 [,) +∞ ) ) ∩ ℝ* ) ) |
14 |
|
infxrlb |
⊢ ( ( ( ( 𝐹 “ ( 𝐴 [,) +∞ ) ) ∩ ℝ* ) ⊆ ℝ* ∧ 𝑥 ∈ ( ( 𝐹 “ ( 𝐴 [,) +∞ ) ) ∩ ℝ* ) ) → inf ( ( ( 𝐹 “ ( 𝐴 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ≤ 𝑥 ) |
15 |
2 13 14
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑥 ∈ ( ( 𝐹 “ ( 𝐵 [,) +∞ ) ) ∩ ℝ* ) ) → inf ( ( ( 𝐹 “ ( 𝐴 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ≤ 𝑥 ) |
16 |
15
|
ralrimiva |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ∀ 𝑥 ∈ ( ( 𝐹 “ ( 𝐵 [,) +∞ ) ) ∩ ℝ* ) inf ( ( ( 𝐹 “ ( 𝐴 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ≤ 𝑥 ) |
17 |
|
inss2 |
⊢ ( ( 𝐹 “ ( 𝐵 [,) +∞ ) ) ∩ ℝ* ) ⊆ ℝ* |
18 |
|
infxrcl |
⊢ ( ( ( 𝐹 “ ( 𝐴 [,) +∞ ) ) ∩ ℝ* ) ⊆ ℝ* → inf ( ( ( 𝐹 “ ( 𝐴 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ∈ ℝ* ) |
19 |
1 18
|
ax-mp |
⊢ inf ( ( ( 𝐹 “ ( 𝐴 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ∈ ℝ* |
20 |
|
infxrgelb |
⊢ ( ( ( ( 𝐹 “ ( 𝐵 [,) +∞ ) ) ∩ ℝ* ) ⊆ ℝ* ∧ inf ( ( ( 𝐹 “ ( 𝐴 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ∈ ℝ* ) → ( inf ( ( ( 𝐹 “ ( 𝐴 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ≤ inf ( ( ( 𝐹 “ ( 𝐵 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ↔ ∀ 𝑥 ∈ ( ( 𝐹 “ ( 𝐵 [,) +∞ ) ) ∩ ℝ* ) inf ( ( ( 𝐹 “ ( 𝐴 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ≤ 𝑥 ) ) |
21 |
17 19 20
|
mp2an |
⊢ ( inf ( ( ( 𝐹 “ ( 𝐴 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ≤ inf ( ( ( 𝐹 “ ( 𝐵 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ↔ ∀ 𝑥 ∈ ( ( 𝐹 “ ( 𝐵 [,) +∞ ) ) ∩ ℝ* ) inf ( ( ( 𝐹 “ ( 𝐴 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ≤ 𝑥 ) |
22 |
16 21
|
sylibr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → inf ( ( ( 𝐹 “ ( 𝐴 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ≤ inf ( ( ( 𝐹 “ ( 𝐵 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |