Step |
Hyp |
Ref |
Expression |
1 |
|
inss2 |
|- ( ( F " ( A [,) +oo ) ) i^i RR* ) C_ RR* |
2 |
1
|
a1i |
|- ( ( ( A e. RR /\ B e. RR /\ A <_ B ) /\ x e. ( ( F " ( B [,) +oo ) ) i^i RR* ) ) -> ( ( F " ( A [,) +oo ) ) i^i RR* ) C_ RR* ) |
3 |
|
rexr |
|- ( A e. RR -> A e. RR* ) |
4 |
3
|
3ad2ant1 |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> A e. RR* ) |
5 |
|
simp3 |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> A <_ B ) |
6 |
|
df-ico |
|- [,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z < y ) } ) |
7 |
|
xrletr |
|- ( ( A e. RR* /\ B e. RR* /\ w e. RR* ) -> ( ( A <_ B /\ B <_ w ) -> A <_ w ) ) |
8 |
6 6 7
|
ixxss1 |
|- ( ( A e. RR* /\ A <_ B ) -> ( B [,) +oo ) C_ ( A [,) +oo ) ) |
9 |
4 5 8
|
syl2anc |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( B [,) +oo ) C_ ( A [,) +oo ) ) |
10 |
|
imass2 |
|- ( ( B [,) +oo ) C_ ( A [,) +oo ) -> ( F " ( B [,) +oo ) ) C_ ( F " ( A [,) +oo ) ) ) |
11 |
|
ssrin |
|- ( ( F " ( B [,) +oo ) ) C_ ( F " ( A [,) +oo ) ) -> ( ( F " ( B [,) +oo ) ) i^i RR* ) C_ ( ( F " ( A [,) +oo ) ) i^i RR* ) ) |
12 |
9 10 11
|
3syl |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( ( F " ( B [,) +oo ) ) i^i RR* ) C_ ( ( F " ( A [,) +oo ) ) i^i RR* ) ) |
13 |
12
|
sselda |
|- ( ( ( A e. RR /\ B e. RR /\ A <_ B ) /\ x e. ( ( F " ( B [,) +oo ) ) i^i RR* ) ) -> x e. ( ( F " ( A [,) +oo ) ) i^i RR* ) ) |
14 |
|
infxrlb |
|- ( ( ( ( F " ( A [,) +oo ) ) i^i RR* ) C_ RR* /\ x e. ( ( F " ( A [,) +oo ) ) i^i RR* ) ) -> inf ( ( ( F " ( A [,) +oo ) ) i^i RR* ) , RR* , < ) <_ x ) |
15 |
2 13 14
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR /\ A <_ B ) /\ x e. ( ( F " ( B [,) +oo ) ) i^i RR* ) ) -> inf ( ( ( F " ( A [,) +oo ) ) i^i RR* ) , RR* , < ) <_ x ) |
16 |
15
|
ralrimiva |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> A. x e. ( ( F " ( B [,) +oo ) ) i^i RR* ) inf ( ( ( F " ( A [,) +oo ) ) i^i RR* ) , RR* , < ) <_ x ) |
17 |
|
inss2 |
|- ( ( F " ( B [,) +oo ) ) i^i RR* ) C_ RR* |
18 |
|
infxrcl |
|- ( ( ( F " ( A [,) +oo ) ) i^i RR* ) C_ RR* -> inf ( ( ( F " ( A [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR* ) |
19 |
1 18
|
ax-mp |
|- inf ( ( ( F " ( A [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR* |
20 |
|
infxrgelb |
|- ( ( ( ( F " ( B [,) +oo ) ) i^i RR* ) C_ RR* /\ inf ( ( ( F " ( A [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR* ) -> ( inf ( ( ( F " ( A [,) +oo ) ) i^i RR* ) , RR* , < ) <_ inf ( ( ( F " ( B [,) +oo ) ) i^i RR* ) , RR* , < ) <-> A. x e. ( ( F " ( B [,) +oo ) ) i^i RR* ) inf ( ( ( F " ( A [,) +oo ) ) i^i RR* ) , RR* , < ) <_ x ) ) |
21 |
17 19 20
|
mp2an |
|- ( inf ( ( ( F " ( A [,) +oo ) ) i^i RR* ) , RR* , < ) <_ inf ( ( ( F " ( B [,) +oo ) ) i^i RR* ) , RR* , < ) <-> A. x e. ( ( F " ( B [,) +oo ) ) i^i RR* ) inf ( ( ( F " ( A [,) +oo ) ) i^i RR* ) , RR* , < ) <_ x ) |
22 |
16 21
|
sylibr |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> inf ( ( ( F " ( A [,) +oo ) ) i^i RR* ) , RR* , < ) <_ inf ( ( ( F " ( B [,) +oo ) ) i^i RR* ) , RR* , < ) ) |