Description: The superior limit of a sequence F of extended real numbers is the infimum of the set of suprema of all restrictions of F to an upperset of reals . (Contributed by Glauco Siliprandi, 2-Jan-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | limsupvald.1 | |- ( ph -> F e. V ) |
|
| limsupvald.2 | |- G = ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
||
| Assertion | limsupvald | |- ( ph -> ( limsup ` F ) = inf ( ran G , RR* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limsupvald.1 | |- ( ph -> F e. V ) |
|
| 2 | limsupvald.2 | |- G = ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
|
| 3 | 2 | limsupval | |- ( F e. V -> ( limsup ` F ) = inf ( ran G , RR* , < ) ) |
| 4 | 1 3 | syl | |- ( ph -> ( limsup ` F ) = inf ( ran G , RR* , < ) ) |