Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Glauco Siliprandi
Limits
Inferior limit (lim inf)
limsupvald
Metamath Proof Explorer
Description: The superior limit of a sequence F of extended real numbers is the
infimum of the set of suprema of all restrictions of F to an
upperset of reals . (Contributed by Glauco Siliprandi , 2-Jan-2022)
Ref
Expression
Hypotheses
limsupvald.1
⊢ φ → F ∈ V
limsupvald.2
⊢ G = k ∈ ℝ ⟼ sup F k +∞ ∩ ℝ * ℝ * <
Assertion
limsupvald
⊢ φ → lim sup ⁡ F = sup ran ⁡ G ℝ * <
Proof
Step
Hyp
Ref
Expression
1
limsupvald.1
⊢ φ → F ∈ V
2
limsupvald.2
⊢ G = k ∈ ℝ ⟼ sup F k +∞ ∩ ℝ * ℝ * <
3
2
limsupval
⊢ F ∈ V → lim sup ⁡ F = sup ran ⁡ G ℝ * <
4
1 3
syl
⊢ φ → lim sup ⁡ F = sup ran ⁡ G ℝ * <