Step |
Hyp |
Ref |
Expression |
1 |
|
limsupresicompt.a |
|- ( ph -> A e. V ) |
2 |
|
limsupresicompt.m |
|- ( ph -> M e. RR ) |
3 |
|
limsupresicompt.z |
|- Z = ( M [,) +oo ) |
4 |
1
|
mptexd |
|- ( ph -> ( x e. A |-> B ) e. _V ) |
5 |
2 3 4
|
limsupresico |
|- ( ph -> ( limsup ` ( ( x e. A |-> B ) |` Z ) ) = ( limsup ` ( x e. A |-> B ) ) ) |
6 |
|
resmpt3 |
|- ( ( x e. A |-> B ) |` Z ) = ( x e. ( A i^i Z ) |-> B ) |
7 |
6
|
a1i |
|- ( ph -> ( ( x e. A |-> B ) |` Z ) = ( x e. ( A i^i Z ) |-> B ) ) |
8 |
7
|
fveq2d |
|- ( ph -> ( limsup ` ( ( x e. A |-> B ) |` Z ) ) = ( limsup ` ( x e. ( A i^i Z ) |-> B ) ) ) |
9 |
5 8
|
eqtr3d |
|- ( ph -> ( limsup ` ( x e. A |-> B ) ) = ( limsup ` ( x e. ( A i^i Z ) |-> B ) ) ) |