Metamath Proof Explorer


Theorem limsupcli

Description: Closure of the superior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypothesis limsupcli.1
|- F e. V
Assertion limsupcli
|- ( limsup ` F ) e. RR*

Proof

Step Hyp Ref Expression
1 limsupcli.1
 |-  F e. V
2 limsupcl
 |-  ( F e. V -> ( limsup ` F ) e. RR* )
3 1 2 ax-mp
 |-  ( limsup ` F ) e. RR*